Skip to main content

Spliceosomal Proteins in Plants

  • Chapter
Nuclear pre-mRNA Processing in Plants

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 326))

The spliceosome is a large nuclear structure consisting of dynamically interacting RNAs and proteins. This chapter briefly reviews some of the known components and their interactions. Large-scale proteomics and gene expression studies may be required to unravel the many intricate mechanisms involved in splice site recognition and selection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ali GS, Palusa SG, Golovkin M, Prasad J, Manley JL, Reddy ASN (2007) Regulation of plant developmental processes by a novel splicing factor. PLoS ONE 2:e471

    Article  PubMed  CAS  Google Scholar 

  • Bezerra IC, Michaels SD, Schomburg FM, Amasino RM (2004) Lesions in the mRNA cap-binding gene ABA HYPERSENSITIVE 1 suppress FRIGIDA-mediated delayed flowering in Arabidopsis. Plant J 40:112–119

    Article  PubMed  CAS  Google Scholar 

  • Burge CB, Tuschl T, Sharp PA (1999) Splicing of precursors to mRNAs by the spliceosome. In: Gesteland RF, Cech TR, Atkins JF (eds) The RNA World: the nature of modern RNA suggests a prebiotic RNA. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp 525–560

    Google Scholar 

  • Campbell MA, Haas BJ, Hamilton JP, Mount SM, Buell CR (2006) Comprehensive analysis of alternative splicing in rice and comparative analyses with Arabidopsis. BMC Genomics 7:327

    Article  PubMed  CAS  Google Scholar 

  • Caspary F, Shevchenko A, Wilm M, Seraphin B (1999) Partial purification of the yeast U2 snRNP reveals a novel yeast pre-mRNA splicing factor required for pre-spliceosome assembly. EMBO J 18:3463–3474

    Article  PubMed  CAS  Google Scholar 

  • Colot HV, Stutz F, Rosbash M (1996) The yeast splicing factor Mud13p is a commitment complex component and corresponds to CBP20, the small subunit of the nuclear cap-binding complex. Genes Dev 10:1699–1708

    Article  PubMed  CAS  Google Scholar 

  • Connelly S, Filipowicz W (1993) Activity of chimeric U small nuclear RNA (snRNA)/mRNA genes in transfected protoplasts of Nicotiana plumbaginifolia: U snRNA 3¢-end formation and transcription initiation can occur independently in plants. Mol Cell Biol 13:6403–6415

    PubMed  CAS  Google Scholar 

  • Domon C, Lorković ZJ, Valcarcel J, Filipowicz W (1998) Multiple forms of the U2 small nuclear ribonucleoprotein auxiliary factor U2AF subunits expressed in higher plants. J Biol Chem 273:34603–34610

    Article  PubMed  CAS  Google Scholar 

  • Fabrizio P, Esser S, Kastner B, Lührmann R (1994) Isolation of S. cerevisiae snRNPs: comparison of U1 and U4/U6.U5 to their human counterparts. Science 264:261–265

    Article  PubMed  CAS  Google Scholar 

  • Gao H, Gordon-Kamm WJ, Lyznik LA (2004) ASF/SF2-like maize pre-mRNA splicing factors affect splice site utilization and their transcripts are alternatively spliced. Gene 339:25–37

    Article  PubMed  CAS  Google Scholar 

  • Golovkin M, Reddy ASN (1996) Structure and expression of a plant U1 snRNP 70K gene: alternative splicing of U1 snRNP 70K pre-mRNAs produces two different transcripts. Plant Cell 8:1421–1435

    Article  PubMed  CAS  Google Scholar 

  • Golovkin M, Reddy ASN (1998) The plant U1 small nuclear ribonucleoprotein particle 70K protein interacts with two novel serine/arginine-rich proteins. Plant Cell 10:1637–1648

    Article  PubMed  CAS  Google Scholar 

  • Golovkin M, Reddy ASN (1999) An SC35-like protein and a novel serine/arginine-rich protein interact with Arabidopsis U1–70K protein. J Biol Chem 274:36428–36438

    Article  PubMed  CAS  Google Scholar 

  • Golovkin M, Reddy ASN (2003) Expression of U1 small nuclear ribonucleoprotein 70K antisense transcript using APETALA3 promoter suppresses the development of sepals and petals. Plant Physiol 132:1884–1891

    Article  PubMed  CAS  Google Scholar 

  • Gottschalk A, Neubauer G, Banroques J, Mann M, Lührmann R, Fabrizio P (1999) Identification by mass spectrometry and functional analysis of novel proteins of the yeast [U4/U6.U5] tri-snRNP. EMBO J 18:4535–4548

    Article  PubMed  CAS  Google Scholar 

  • Gottschalk A, Tang J, Puig O, Salgado J, Neubauer G, Colot HV, Mann M, Seraphin B, Rosbash M, Lührmann R, Fabrizio P (1998) A comprehensive biochemical and genetic analysis of the yeast U1 snRNP reveals five novel proteins. RNA 4:374–393

    PubMed  CAS  Google Scholar 

  • Gupta S, Ciungu A, Jameson N, Lal SK (2006) Alternative splicing expression of U1 snRNP 70K gene is evolutionary conserved between different plant species. DNA Seq 17:254–261

    Article  PubMed  CAS  Google Scholar 

  • Hanley BA, Schuler MA (1991) cDNA cloning of U1, U2, U4 and U5 snRNA families expressed in pea nuclei. Nucleic Acids Res 19:1861–1869

    Article  PubMed  CAS  Google Scholar 

  • Heintzen C, Melzer S, Fischer R, Kappeler S, Apel K, Staiger D (1994) A light- and temperature-entrained circadian clock controls expression of transcripts encoding nuclear proteins with homology to RNA-binding proteins in meristematic tissue. Plant J 5:799–813

    Article  PubMed  CAS  Google Scholar 

  • Hofmann CJ, Marshallsay C, Waibel F, Filipowicz W (1992) Characterization of the genes encoding U4 small nuclear RNAs in Arabidopsis thaliana. Mol Biol Rep 17:21–28

    Article  PubMed  CAS  Google Scholar 

  • Hugouvieux V, Kwak JM, Schroeder JI (2001) An mRNA cap binding protein, ABH1, modulates early abscisic acid signal transduction in Arabidopsis. Cell 106:477–487

    Article  PubMed  CAS  Google Scholar 

  • Ibrahim AF, Watters JA, Brown JW (2001) Differential expression of potato U1A spliceosomal protein genes: a rapid method for expression profiling of multigene families. Plant Mol Biol 45:449–460

    Article  PubMed  CAS  Google Scholar 

  • Iida K, Go M (2006) Survey of conserved alternative splicing events of mRNAs encoding SR proteins in land plants. Mol Biol Evol 23:1085–1094

    Article  PubMed  CAS  Google Scholar 

  • Isshiki M, Tsumoto A, Shimamoto K (2006) The serine/arginine-rich protein family in rice plays important roles in constitutive and alternative splicing of pre-mRNA. Plant Cell 18:146–158

    Article  PubMed  CAS  Google Scholar 

  • Kalyna M, Barta A (2004) A plethora of plant serine/arginine-rich proteins: redundancy or evolution of novel gene functions? Biochem Soc Trans 32:561–564

    Article  PubMed  CAS  Google Scholar 

  • Kalyna M, Lopato S, Voronin V, Barta A (2006) Evolutionary conservation and regulation of particular alternative splicing events in plant SR proteins. Nucleic Acids Res 34:4395–4405

    Article  PubMed  CAS  Google Scholar 

  • Kmieciak M, Simpson CG, Lewandowska D, Brown JW, Jarmolowski A (2002) Cloning and characterization of two subunits of Arabidopsis thaliana nuclear cap-binding complex. Gene 283:171–183

    PubMed  CAS  Google Scholar 

  • Krämer A, Gruter P, Groning K, Kastner B (1999) Combined biochemical and electron microscopic analyses reveal the architecture of the mammalian U2 snRNP. J Cell Biol 145:1355–1368

    Article  PubMed  Google Scholar 

  • Kuhn JM, Breton G, Schroeder JI (2007) mRNA metabolism of flowering-time regulators in wild-type Arabidopsis revealed by a nuclear cap binding protein mutant, abh1. Plant J 50:1049–1062

    Article  PubMed  CAS  Google Scholar 

  • Lambermon MH, Fu Y, Wieczorek Kirk DA, Dupasquier M, Filipowicz W, Lorković ZJ (2002) UBA1 and UBA2, two proteins that interact with UBP1, a multifunctional effector of pre-mRNA maturation in plants. Mol Cell Biol 22:4346–4357

    Article  PubMed  CAS  Google Scholar 

  • Lambermon MH, Simpson GG, Wieczorek Kirk DA, Hemmings-Mieszczak M, Klahre U, Filipowicz W (2000) UBP1, a novel hnRNP-like protein that functions at multiple steps of higher plant nuclear pre-mRNA maturation. EMBO J 19:1638–1649

    Article  PubMed  CAS  Google Scholar 

  • Landsberger M, Lorković ZJ, Oelmuller R (2002) Molecular characterization of nucleus-localized RNA-binding proteins from higher plants. Plant Mol Biol 48:413–421

    Article  PubMed  CAS  Google Scholar 

  • Lazar G, Goodman HM (2000) The Arabidopsis splicing factor SR1 is regulated by alternative splicing. Plant Mol Biol 42:571–581

    Article  PubMed  CAS  Google Scholar 

  • Lazar G, Schaal T, Maniatis T, Goodman HM (1995) Identification of a plant serine-arginine-rich protein similar to the mammalian splicing factor SF2/ASF. Proc Natl Acad Sci USA 92:7672–7676

    Article  PubMed  CAS  Google Scholar 

  • Leader D, Connelly S, Filipowicz W, Waugh R, Brown JW (1993) Differential expression of U5snRNA gene variants in maize (Zea mays) protoplasts. Plant Mol Biol 21:133–143

    Article  PubMed  CAS  Google Scholar 

  • Lewis JD, Gorlich D, Mattaj IW (1996a) A yeast cap binding protein complex (yCBC) acts at an early step in pre-mRNA splicing. Nucleic Acids Res 24:3332–3336

    Article  PubMed  CAS  Google Scholar 

  • Lewis JD, Izaurralde E, Jarmolowski A, McGuigan C, Mattaj IW (1996b) A nuclear cap-binding complex facilitates association of U1 snRNP with the cap-proximal 5′ splice site. Genes Dev 10:1683–1698

    Article  PubMed  CAS  Google Scholar 

  • Lin CH, Patton JG (1995) Regulation of alternative 3′ splice site selection by constitutive splicing factors. RNA 1:234–245

    PubMed  CAS  Google Scholar 

  • Lopato S, Borisjuk L, Milligan AS, Shirley N, Bazanova N, Langridge P (2006) Systematic identification of factors involved in post-transcriptional processes in wheat grain. Plant Mol Biol 62:637–653

    Article  PubMed  CAS  Google Scholar 

  • Lopato S, Forstner C, Kalyna M, Hilscher J, Langhammer U, Indrapichate K, Lorković ZJ, Barta A (2002) Network of interactions of a novel plant-specific Arg/Ser-rich protein, atRSZ33, with atSC35-like splicing factors. J Biol Chem 277:39989–39998

    Article  PubMed  CAS  Google Scholar 

  • Lopato S, Gattoni R, Fabini G, Stevenin J, Barta A (1999a) A novel family of plant splicing factors with a Zn knuckle motif: examination of RNA binding and splicing activities. Plant Mol Biol 39:761–773

    Article  PubMed  CAS  Google Scholar 

  • Lopato S, Kalyna M, Dorner S, Kobayashi R, Krainer AR, Barta A (1999b) atSRp30, one of two SF2/ASF-like proteins from Arabidopsis thaliana, regulates splicing of specific plant genes. Genes Dev 13:987–1001

    Article  PubMed  CAS  Google Scholar 

  • Lopato S, Mayeda A, Krainer AR, Barta A (1996a) Pre-mRNA splicing in plants: characterization of Ser/Arg splicing factors. Proc Natl Acad Sci USA 93:3074–3079

    Article  PubMed  CAS  Google Scholar 

  • Lopato S, Waigmann E, Barta A (1996b) Characterization of a novel arginine/serine-rich splicing factor in Arabidopsis. Plant Cell 8:2255–2264

    Article  PubMed  CAS  Google Scholar 

  • Lorković ZJ, Barta A (2002) Genome analysis: RNA recognition motif (RRM) and K homology (KH) domain RNA-binding proteins from the flowering plant Arabidopsis thaliana. Nucleic Acids Res 30:623–635

    Article  PubMed  Google Scholar 

  • Lorković ZJ, Hilscher J, Barta A (2004) Use of fluorescent protein tags to study nuclear organization of the spliceosomal machinery in transiently transformed living plant cells. Mol Biol Cell 15:3233–3243

    Article  PubMed  Google Scholar 

  • Lorković ZJ, Lehner R, Forstner C, Barta A (2005) Evolutionary conservation of minor U12-type spliceosome between plants and humans. RNA 11:1095–1107

    Article  PubMed  CAS  Google Scholar 

  • Lorković ZJ, Wieczorek Kirk DA, Klahre U, Hemmings-Mieszczak M, Filipowicz W (2000a) RBP45 and RBP47, two oligouridylate-specific hnRNP-like proteins interacting with poly(A)+ RNA in nuclei of plant cells. RNA 6:1610–1624

    Article  PubMed  Google Scholar 

  • Lorković ZJ, Wieczorek Kirk DA, Lambermon MH, Filipowicz W (2000b) Pre-mRNA splicing in higher plants. Trends Plant Sci 5:160–167

    Article  PubMed  Google Scholar 

  • Merendino L, Guth S, Bilbao D, Martinez C, Valcarcel J (1999) Inhibition of msl-2 splicing by Sex-lethal reveals interaction between U2AF35 and the 3¢ splice site AG. Nature 402:838–841

    Article  PubMed  CAS  Google Scholar 

  • Musci MA, Egeland DB, Schuler MA (1992) Molecular comparison of monocot and dicot U1 and U2 snRNAs. Plant J 2:589–599

    PubMed  CAS  Google Scholar 

  • Palusa SG, Ali GS, Reddy ASN (2007) Alternative splicing of pre-mRNAs of Arabidopsis serine/arginine-rich proteins: regulation by hormones and stresses. Plant J 49:1091–1107

    Article  PubMed  CAS  Google Scholar 

  • Papp I, Mur LA, Dalmadi A, Dulai S, Koncz C (2004) A mutation in the Cap Binding Protein 20 gene confers drought tolerance to Arabidopsis. Plant Mol Biol 55:679–686

    Article  PubMed  CAS  Google Scholar 

  • Pertea M, Mount SM, Salzberg SL (2007) A computational survey of candidate exonic splicing enhancer motifs in the model plant Arabidopsis thaliana. BMC Bioinformatics 8:159

    Article  PubMed  CAS  Google Scholar 

  • Polycarpou-Schwarz M, Gunderson SI, Kandels-Lewis S, Seraphin B, Mattaj IW (1996) Drosophila SNF/D25 combines the functions of the two snRNP proteins U1A and U2B’ that are encoded separately in human, potato, and yeast. RNA 2:11–23

    PubMed  CAS  Google Scholar 

  • Reddy ASN (2001) Nuclear pre-mRNA splicing in plants. Critical Rev Plant Sci 20:523–571

    Article  CAS  Google Scholar 

  • Reddy ASN (2004) Plant serine/arginine-rich proteins and their role in pre-mRNA splicing. Trends Plant Sci 9:541–547

    Article  PubMed  CAS  Google Scholar 

  • Reddy ASN (2007) Alternative splicing of pre-messenger RNAs in plants in the genomic era. Annu Rev Plant Biol 58:267–294

    Article  PubMed  CAS  Google Scholar 

  • Ruskin B, Zamore PD, Green MR (1988) A factor, U2AF, is required for U2 snRNP binding and splicing complex assembly. Cell 52:207–219

    Article  PubMed  CAS  Google Scholar 

  • Saldi T, Wilusz C, MacMorris M, Blumenthal T (2007) Functional redundancy of worm spliceosomal proteins U1A and U2B. Proc Natl Acad Sci USA 104:9753–9757

    Article  PubMed  CAS  Google Scholar 

  • Savaldi-Goldstein S, Aviv D, Davydov O, Fluhr R (2003) Alternative splicing modulation by a LAMMER kinase impinges on developmental and transcriptome expression. Plant Cell 15:926–938

    Article  PubMed  CAS  Google Scholar 

  • Savaldi-Goldstein S, Sessa G, Fluhr R (2000) The ethylene-inducible PK12 kinase mediates the phosphorylation of SR splicing factors. Plant J 21:91–96

    Article  PubMed  CAS  Google Scholar 

  • Shukla GC, Padgett RA (1999) Conservation of functional features of U6atac and U12 snRNAs between vertebrates and higher plants. RNA 5:525–538

    Article  PubMed  CAS  Google Scholar 

  • Simpson CG, Jennings SN, Clark GP, Thow G, Brown JW (2004) Dual functionality of a plant U-rich intronic sequence element. Plant J 37:82–91

    Article  PubMed  CAS  Google Scholar 

  • Simpson GG, Clark GP, Rothnie HM, Boelens W, van Venrooij W, Brown JW (1995) Molecular characterization of the spliceosomal proteins U1A and U2B″ from higher plants. EMBO J 14:4540–4550

    PubMed  CAS  Google Scholar 

  • Staiger D, Zecca L, Wieczorek Kirk DA, Apel K, Eckstein L (2003) The circadian clock regulated RNA-binding protein AtGRP7 autoregulates its expression by influencing alternative splicing of its own pre-mRNA. Plant J 33:361–371

    Article  PubMed  CAS  Google Scholar 

  • Stevens SW, Abelson J (1999) Purification of the yeast U4/U6.U5 small nuclear ribonucleoprotein particle and identification of its proteins. Proc Natl Acad Sci USA 96:7226–7231

    Article  PubMed  CAS  Google Scholar 

  • Stevens SW, Barta I, Ge HY, Moore RE, Young MK, Lee TD, Abelson J (2001) Biochemical and genetic analyses of the U5, U6, and U4/U6 x U5 small nuclear ribonucleoproteins from Saccharomyces cerevisiae. RNA 7:1543–1553

    PubMed  CAS  Google Scholar 

  • Stojdl DF, Bell JC (1999) SR protein kinases: the splice of life. Biochem Cell Biol 77:293–298

    Article  PubMed  CAS  Google Scholar 

  • Tarn WY, Steitz JA (1997) Pre-mRNA splicing: the discovery of a new spliceosome doubles the challenge. Trends Biochem Sci 22:132–137

    Article  PubMed  CAS  Google Scholar 

  • Valadkhan S (2005) snRNAs as the catalysts of pre-mRNA splicing. Curr Opin Chem Biol 9:603–608

    Article  PubMed  CAS  Google Scholar 

  • van Santen VL, Spritz RA (1987) Nucleotide sequence of a bean (Phaseolus vulgaris) U1 small nuclear RNA gene: implications for plant pre-mRNA splicing. Proc Natl Acad Sci USA 84:9094–9098

    Article  PubMed  Google Scholar 

  • Vankan P, Edoh D, Filipowicz W (1988) Structure and expression of the U5 snRNA gene of Arabidopsis thaliana. Conserved upstream sequence elements in plant U-RNA genes. Nucleic Acids Res 16:10425–10440

    Article  PubMed  CAS  Google Scholar 

  • Vankan P, Filipowicz W (1988) Structure of U2 snRNA genes of Arabidopsis thaliana and their expression in electroporated plant protoplasts. EMBO J 7:791–799

    PubMed  CAS  Google Scholar 

  • Vankan P, Filipowicz W (1989) A U-snRNA gene-specific upstream element and a −30 ‘TATA box’ are required for transcription of the U2 snRNA gene of Arabidopsis thaliana. EMBO J 8:3875–3882

    PubMed  CAS  Google Scholar 

  • Vaux P, Guerineau F, Waugh R, Brown JW (1992) Characterization and expression of U1snRNA genes from potato. Plant Mol Biol 19:959–971

    Article  PubMed  CAS  Google Scholar 

  • Waibel F, Filipowicz W (1990) U6 snRNA genes of Arabidopsis are transcribed by RNA polymerase III but contain the same two upstream promoter elements as RNA polymerase II-transcribed U-snRNA genes. Nucleic Acids Res 18:3451–3458

    Article  PubMed  CAS  Google Scholar 

  • Wang BB, Brendel V (2004) The ASRG database: identification and survey of Arabidopsis thaliana genes involved in pre-mRNA splicing. Genome Biol 5:R102

    Article  PubMed  Google Scholar 

  • Wang BB, Brendel V (2006a) Genomewide comparative analysis of alternative splicing in plants. Proc Natl Acad Sci USA 103:7175–7180

    Article  PubMed  CAS  Google Scholar 

  • Wang BB, Brendel V (2006b) Molecular characterization and phylogeny of U2AF35 homologs in plants. Plant Physiol 140:624–636

    Article  PubMed  CAS  Google Scholar 

  • Will CL, Lührmann R (2001) Spliceosomal UsnRNP biogenesis, structure and function. Curr Opin Cell Biol 13:290–301

    Article  PubMed  CAS  Google Scholar 

  • Will CL, Schneider C, Hossbach M, Urlaub H, Rauhut R, Elbashir S, Tuschl T, Lührmann R (2004) The human 18S U11/U12 snRNP contains a set of novel proteins not found in the U2-dependent spliceosome. RNA 10:929–941

    Article  PubMed  CAS  Google Scholar 

  • Will CL, Schneider C, Reed R, Lührmann R (1999) Identification of both shared and distinct proteins in the major and minor spliceosomes. Science 284:2003–2005

    Article  PubMed  CAS  Google Scholar 

  • Wu S, Romfo CM, Nilsen TW, Green MR (1999) Functional recognition of the 3′ splice site AG by the splicing factor U2AF35. Nature 402:832–835

    Article  PubMed  CAS  Google Scholar 

  • Xiong L, Gong Z, Rock CD, Subramanian S, Guo Y, Xu W, Galbraith D, Zhu JK (2001) Modulation of abscisic acid signal transduction and biosynthesis by an Sm-like protein in Arabidopsis. Dev Cell 1:771–781

    Article  PubMed  CAS  Google Scholar 

  • Zamore PD, Patton JG, Green MR (1992) Cloning and domain structure of the mammalian splicing factor U2AF. Nature 355:609–614

    Article  PubMed  CAS  Google Scholar 

  • Zorio DA, Blumenthal T (1999) Both subunits of U2AF recognize the 3′ splice site in Caenorhabditis elegans. Nature 402:835–838

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ru, Y., Wang, B.B., Brendel, V. (2008). Spliceosomal Proteins in Plants. In: Reddy, A.S.N., Golovkin, M. (eds) Nuclear pre-mRNA Processing in Plants. Current Topics in Microbiology and Immunology, vol 326. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76776-3_1

Download citation

Publish with us

Policies and ethics