Skip to main content

Molecular Imaging in Oncology

  • Chapter
Molecular Imaging

Abstract

Highly “tumor-specific” and “tumor cell signal-specific” radiopharmaceuticals are essential to meet the growing demand of molecular imaging technology to manage complex patient-specific tumor biology. At present, PET/CT is one of the most rapidly growing medical imaging techniques with many applications, such as diagnosis, grading malignancy, staging, identification of residual disease, and monitoring response to therapy. Numerous molecular imaging radiopharmaceuticals are in various stages of preclinical and clinical development and, hopefully, some of them will be approved in the near future for routine clinical use. In this chapter, the basic aspects of tumor biology, the design and development strategies of the most promising new radiopharmaceuticals, and the mechanism(s) of tumor cell uptake and localization of radiotracers are presented. Specifically, the clinical utility of molecular imaging radiotracers to assess tumor metabolism, proliferation, membrane synthesis, amino acid transport, protein synthesis, angiogenesis, apoptosis, and specific binding to tumor specific antigens and receptors is discussed providing specific examples of investigational clinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams JM, Cory S (2001) Life-or-death decisions by the Bcl-2 protein family. Trends Biochem Sci 26:61–66

    Article  PubMed  CAS  Google Scholar 

  • Ahlstrom H, Eriksson B, Bergstrom M, et al (1995) Pancreatic neuroendocrine tumors: diagnosis with PET. Radiology 195:333–337

    PubMed  CAS  Google Scholar 

  • Ahmed N, Langlois R, Rodrigue S, et al (2007) Automated synthesis of 11β-methoxy-4-16α-[16α-18F]difluoroestradiol (4F-M[18F]FES) for estrogen receptor imaging by positron emission tomography. Nucl Med Biol 34:459–464

    Article  PubMed  CAS  Google Scholar 

  • Anderson CJ, Dehdashti F, Cutler PD, et al (2001) 64Cu-TETA-octreotide as a PET imaging agent for patients with neuroen-docrine tumors. J Nucl Med 42:213–221

    PubMed  CAS  Google Scholar 

  • Becherer A, Karanikas G, Szabo M, et al (2003) Brain tumour imaging with PET: a comparison between [18F]fluorodopa and [11C]methionine. Eur J Nucl Med Mol Imaging 30:1561–1567

    Article  PubMed  CAS  Google Scholar 

  • Becherer A, Szabo M, Karanikas G, et al (2004) Imaging of advanced neuroendocrine tumors with [18]F-FDOPA PET. J Nucl Med 45:1161–1167

    PubMed  CAS  Google Scholar 

  • Beck R, Roper B, Carlsen JM, et al (2007) Pretreatment 18F-FAZA PET predicts success of hypoxia-directed radiochemotherapy using tirapazamine. J Nucl Med 48: 973–980

    Article  PubMed  CAS  Google Scholar 

  • Beer A, Lorenzen S, Metz S, et al (2008) Comparison of integrin avb3 expression and glucose metabolism in primary and metastatic lesions in cancer patients: a PET study using 18F-Galacto-RGD and 18F-FDG. J Nucl Med 49:22–29

    Article  PubMed  Google Scholar 

  • Belhocine T, Steinmetz N, Hustinx R, et al (2002) Increased uptake of the apoptosis imaging agent 99mTc recombinant human Annexin V in human tumors after one course of chemotherapy as a predictor of tumor response and patient prognosis. Clin Cancer Res 8:2766–2774

    PubMed  CAS  Google Scholar 

  • Belhocine T, Steinmetz N, Li C, Green A, et al (2004) The imaging of apoptosis with the radiolabeled annexin V: optimal timing for clinical feasibility. Technol Cancer Res Treat 3:23–32

    PubMed  CAS  Google Scholar 

  • Bergstrom M, Lu L, Eriksson B, et al (1996) Modulation of organ uptake of 11C-labelled 5-hydroxytryptophan. Biogenic Amines 12:477–485

    Google Scholar 

  • Bjurling P, Antoni G, Watanabe Y, et al (1990) Enzymatic synthesis of carboxy-11C-labelled l-tyrosine, l-DOPA, l-trypto-phan and 5-hydroxy-l-tryptophan. Acta Chem Scand 44:178–182

    Article  CAS  Google Scholar 

  • Blake GM, Park-Holohan SJ, Cook GJ, et al (2001) Quantitative studies of bone with the use of 18F-fluoride and 99mTc-meth-ylene diphosphonate. Semin Nucl Med 31:28–49

    Article  PubMed  CAS  Google Scholar 

  • Blankenberg FG (2008) In vivo detection of apoptosis. J Nucl Med 49:81S–95S

    Article  PubMed  CAS  Google Scholar 

  • Blau M, Nagler W, Bender MA (1962) A new isotope for bone scanning. J Nucl Med 3:332–334

    PubMed  CAS  Google Scholar 

  • Boersma HH, Kietselaer BL, Stolk LM, et al (2005) Past, present, and future of annexin A5: from protein discovery to clinical applications. J Nucl Med 46:2035–2050

    PubMed  CAS  Google Scholar 

  • Böhm I, Schild H (2003) Apoptosis: the complex scenario for a silent cell death. Mol Imaging Biol 5:2–14

    Article  PubMed  Google Scholar 

  • Borjesson PKE, Jauw YWS, Boellaard R, et al (2006) Performance of immuno positron emission tomography with zirconium-89-labeled chimeric monoclonal antibody U36 in the detection of lymph node metastases in head and neck cancer patients. Clin Cancer Res 12:2133–2140

    Article  PubMed  Google Scholar 

  • Cai W, Wu Y, Chen K, et al (2006) In vitro and in vivo characterization of 64Cu labeled Abegrin, a humanized monoclonal antibody against αVβ3. Cancer Res 66:9673–9681

    Article  PubMed  CAS  Google Scholar 

  • Cai W, Olafsen T, Zhang X, et al (2007a) PET imaging of col-orectal cancer in xenografts-bearing mice by use of an 18F-labeled T84.66 anti-carcinoembryonic antigen diabody. J Nucl Med 48:304–310

    Article  CAS  Google Scholar 

  • Cai W, Chen K, He L, et al (2007b) Quantitative PET of EGFR expression in xenograft-bearing mice using 64Cu-labeled cetuximab, a chimeric anti-EGFR monoclonal antibody. Eur J Nucl Med Mol Imaging 34:850–858

    Article  CAS  Google Scholar 

  • Chapman JD, Franko AJ, Sharplin J (1981) A marker for hypoxic cells in tumours with potential clinical applicability. Br J Cancer 43:546–550

    PubMed  CAS  Google Scholar 

  • Chen W (2007) Clinical applications of PET in brain tumors. J Nucl Med 48:1468–1481

    Article  PubMed  Google Scholar 

  • Chen W, Silverman DHS (2007) Advances in evaluation of primary brain tumors. Semin Nucl Med 38:240–250

    Article  Google Scholar 

  • Chen W, Silverman DHS, Delaloye S, et al (2006) 18F-FDOPA PET imaging of brain tumors: comparison study with 18F-FDG PET and evaluation of diagnostic accuracy. J Nucl Med 47:904–911

    PubMed  CAS  Google Scholar 

  • Chen W, Delaloye S, Silverman DHS, et al (2007) Predicting treatment response of malignant gliomas to bevacizumab and irinotecan by imaging proliferation with [18F] fluoro-thymidine positron emission tomography: a pilot study. J Clin Oncol 25:4714–4721

    Article  PubMed  CAS  Google Scholar 

  • Christman D, Crawford EJ, Friedkin M, et al (1972) Detection of DNA synthesis in intact organisms with positron-emitting methyl-[C-11]-thymidine. Proc Natl Acad Sci U S A 69:988–992

    Article  PubMed  CAS  Google Scholar 

  • Clary GL, Tsai C-F, Guynn RW, et al (1987) Substrate specificity of choline kinase. Arch Biochem Biophys 254: 214–221

    Article  PubMed  CAS  Google Scholar 

  • Cleaver JE (1967) Thymidine metabolism and cell kinetics. Front Biol 6:43–100

    Google Scholar 

  • Conti P, Alauddin M, Fissekis J, et al (1995) Synthesis of 2′-flu-oro-5-[11C]-methyl-1-beta-D-arabinofuranosyluracil ([11C]-FMAU): a potential nucleoside analog for in vivo study of cellular proliferation with PET. Nucl Med Biol 22(6):783–789

    Article  PubMed  CAS  Google Scholar 

  • Conti PS, Bading JR, Mouton P, et al (2008) In vivo measurement of cell proliferation in canine brain tumor using C-11 labeled FMAU and PET. Nucl Med Biol 35:131–141

    Article  PubMed  CAS  Google Scholar 

  • Cornell R, Grove GL, Rothblat GH, et al (1997) Lipid requirement for cell cycling: the effect of selective inhibition of lipid synthesis. Exp Cell Res 109:299–307

    Article  Google Scholar 

  • Couturier O, Luxen A, Chatal JF, et al (2004) Fluorinated tracers for imaging cancer with positron emission tomography. Eur J Nucl Med Mol Imaging 31:1182–1206

    Article  PubMed  CAS  Google Scholar 

  • DeGrado TR, Coleman RE, Wang S, et al (2001) Synthesis and evaluation of 18F labeled choline as an oncologic tracer for positron emission tomography: initial findings in prostate cancer. Cancer Res 61:110–117

    PubMed  CAS  Google Scholar 

  • Dijkers E, Lub-de Hooge MN, Kosterink JG, et al (2007) Characterization of 89Zrtrastuzumab for clinical HER2 immunoPET imaging. J Clin Oncol 25(suppl. 18):3508

    Google Scholar 

  • Divgi CR, Pandit-Taskar N, Jungbluth AA, et al (2007) Preoperative characterization of clear-cell renal carcinoma using iodine-124-labelled antibody chimeric G250 (124I-cG250) and PET in patients with renal masses: a phase I trial. Lancet Oncol 8:304–310

    Article  PubMed  CAS  Google Scholar 

  • Elgazzar AH, Shehab D (2006) Musculoskeletal system. In: Elgazzar A (ed) The pathologic basis of nuclear medicine, 2nd edn. Spriger, Berlin

    Google Scholar 

  • Eriksson B, Bergstrom M, Sundin A, et al (2002) The role of PET in localization of neuroendocrine and adrenocortical tumors. Ann N Y Acad Sci 970:159–169

    Article  PubMed  CAS  Google Scholar 

  • Even-Sapir E, Metser U, Flusser G, et al (2004) Assessment of malignant skeletal disease with 18F-fluoride PET/CT. J Nucl Med 45:272–278

    PubMed  Google Scholar 

  • Even-Sapir E, Mishani E, Flusser G, et al (2007) 18F-fluoride positron emission tomography and positron emission tomography/computed tomography. Semin Nucl Med 37: 462–469

    Article  PubMed  Google Scholar 

  • Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186

    PubMed  CAS  Google Scholar 

  • Foo SS, Abbott DF, Lawrentschuk N, et al (2004) Functional imaging of intra-tumoral hypoxia. Mol Imaging Biol 6:291–305

    Article  PubMed  Google Scholar 

  • Friedlander M, Brooks PC, Shaffer RW, et al (1995) Definition of two angiogenic pathways by distinct αV integrins. Science 270:1500–1502

    Article  PubMed  CAS  Google Scholar 

  • Gabriel M, Muehllechner P, Decristoforo C, et al (2005) 99mTc-EDDA/HYNIC-Tyr(3)-octreotide for staging and follow-up of patients with neuroendocrine gastro-entero-pancreatic tumors. Q J Nucl Med 49:237–244

    CAS  Google Scholar 

  • Gabriel M, Decristoforo C, Kendler D, et al (2007) 68Ga-DOTA-Tyr3-Octreotide PET in neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and CT. J Nucl Med 48:508–518

    Article  PubMed  CAS  Google Scholar 

  • Gambhir SS, Czernin J, Schwimmer J, et al (2001) A tabulated summary of the FDG PET literature. J Nucl Med 42(suppl 5):1S–93S

    PubMed  CAS  Google Scholar 

  • Gazdar AF, Helman LJ, Israel MA, et al (1988) Expression of neuroendocrine cell markers L-dopa decarboxylase, chromogranin A, and dense core granules in human tumors of endocrine and nonendocrine origin. Cancer Res 48: 4078–4082

    PubMed  CAS  Google Scholar 

  • Goldenberg DM, Rossi EA, Sharkey RM (2008) Multifunctional antibodies by the dock-and-lock method for improved cancer imaging and therapy by pretargeting. J Nucl Med 49:158–163

    Article  PubMed  CAS  Google Scholar 

  • Grant FD, Fahey FH, Packard AB, et al (2008) Skeletal PET with 18F-fluoride: applying new technology to an old tracer. J Nucl Med 49:68–78

    Article  PubMed  Google Scholar 

  • Grierson JR, Schwartz JL, Muzi M, et al (2004) Metabolism of 3′-deoxy-3′-[F-18]fluorothymidine in proliferating A549 cells: validations for positron emission tomography. Nucl Med Biol 31:829–837

    Article  PubMed  CAS  Google Scholar 

  • Gronroos T, Eskola O, Lehtio K, et al (2001) Pharmacokinetics of [18F]FETNIM: a potential marker for PET. J Nucl Med 42:1397–1404

    PubMed  CAS  Google Scholar 

  • Hamaoka T, Madewell JE, Podoloff DA, et al (2004) Bone imaging in metastatic breast cancer. J Clin Oncol 22:2942–2953

    Article  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  PubMed  CAS  Google Scholar 

  • Hara T, Kosaka N, Shinoura N, et al (1997) PET imaging of brain tumor with [methyl-11C] choline. J Nucl Med 38:842–847

    PubMed  CAS  Google Scholar 

  • Hara T, Kosaka N, Kishi H (2002) Development of [18F]-fluoroethylcholine for cancer imaging with PET: synthesis, biochemistry, and prostate cancer imaging. J Nucl Med 43:187–199

    PubMed  CAS  Google Scholar 

  • Haubner R, Wester HJ (2004) Radiolabeled tracers for imaging of tumor angiogenesis and evaluation of anti-angiogenic therapies. Curr Pharm Des 10:1439–1455

    Article  PubMed  CAS  Google Scholar 

  • Haubner R, Wester H-J, Reuning U, et al (1999) Radiolabeled αVβ3 integrin antagonists: a new class of tracers for tumor targeting. J Nucl Med 40:1061–1071

    PubMed  CAS  Google Scholar 

  • Haubner R, Wester HJ, Weber WA, et al (2001) Noninvasive imaging of alphav beta3 integrin expression using 18F-labeled RGD-containing glycopeptide and positron emission tomography. Cancer Res 61:1781–1785

    PubMed  CAS  Google Scholar 

  • Henriksen G, Herz M, Hauser A, et al (2004) Synthesis and preclinical evaluation of the choline transport tracer deshy-droxy-[18F]fluorocholine ([18F]dOC). Nucl Med Biol 31:851–858

    Article  PubMed  CAS  Google Scholar 

  • Henze M, Schuhmacher J, Hipp P, et al (2001) PET imaging of somatostatin receptors using [68Ga]DOTA-D-Phe1-Tyr3-Octreotide: first results in patients with meningiomas. Eur J Nucl Med 42:1053–1056

    CAS  Google Scholar 

  • Herholz K, Holzer T, Bauer B, et al (1998) 11C-methionine PET for differential diagnosis of low-grade gliomas. Neurology 50:1316–1322

    PubMed  CAS  Google Scholar 

  • Himmelweit B (ed) (1957) The Collected Papers of Paul Ehrlich. Pergamon, Elmsford, NY

    Google Scholar 

  • Hoegerle S, Altehoefer C, Ghanem N, et al (2001) Whole-body 18F-DOPA PET for detection of gastrointestinal carcinoid tumors. Radiology 220:373–380

    PubMed  CAS  Google Scholar 

  • Hoegerle S, Altehoefer C, Ghanem N, et al (2002a) 18F-DOPA positron emission tomography for tumor detection in patients with medullary thyroid carcinoma and elevated calcitonin levels. Eur J Nucl Med 28:64–71

    Article  Google Scholar 

  • Hoegerle S, Nitzsche E, Altehoefer C, et al (2002b) Pheochromocytomas: detection with 18F DOPA whole body PET—initial results. Radiology 222:507–512

    Article  Google Scholar 

  • Hofmann M, Maecke H, Börner AR, et al (2001) Biokinetics and imaging with the somatostatin receptor PET radioligand Ga-68 DOTATOC preliminary data. Eur J Nucl Med 28:1751–1757

    Article  PubMed  CAS  Google Scholar 

  • Holliger P, Winter G (1997) Diabodies: small bispecific antibody fragments. Cancer Immunol Immunother 45:128–130

    Article  PubMed  CAS  Google Scholar 

  • Holliger P, Hudson PJ (2005) Engineered antibody fragments and the rise of single domains. Nat Biotechnol 23:1126–1136

    Article  PubMed  CAS  Google Scholar 

  • Howard BV, Howard WJ (1975) Lipids in normal and tumor cells in culture. Prog Biochem Pharmacol 10:135–166

    PubMed  CAS  Google Scholar 

  • Ibrahim EM, Al-Maghrabi JA (2006) Basis of tumor imaging 1: principles of tumor pathology and biology. In: Elgazzar A (ed) The pathologic basis of nuclear medicine, 2nd edn. Springer, Berlin

    Google Scholar 

  • Ido T, Wan CN, Casella JS, et al (1978) Labeled 2-deoxy-D-glucose analogs: 18F labeled 2-deoxy-2-fluoro-D-glucose, 2-deoxy-2-fluoro-D-mannose and 14C-2-deoxy-2-fluoro-D-glucose. J Label Compd Radiopharmacol 14:175–183

    Article  CAS  Google Scholar 

  • Inoue TJ, Tomiyoshi K, Higuchi T, et al (1998) Biodistribution studies on L-3-[18F]fluoro-α-methyl tyrosine: a potential tumor-detecting agent. J Nucl Med 39:663–667

    PubMed  CAS  Google Scholar 

  • Institute of Medicine: Food and Nutrition Board (1998) Dietary reference intakes for thiamin, riboflavin, niacin, vitamin b6, folate, vitamin b12, pantotheni acid, biotin and choline. National Academy Press, Washington, DC

    Google Scholar 

  • Jackowski S (1994) Coordination of membrane phospholipid synthesis with the cell cycle. J Biol Chem 269:3858–3867

    PubMed  CAS  Google Scholar 

  • Jager PL, Vaalburg W, Pruim J, et al (2001) Radiolabeled amino acids: basic aspects and clinical applications in oncology. J Nucl Med 42:432–445

    PubMed  CAS  Google Scholar 

  • Jager PL, Chirakal R, Marriott CJ, et al (2008) 6-L-18F-fluorodihydroxyphenyl-alanine PET in neuroendocrine tumors: basic aspects and emerging clinical applications. J Nucl Med 49:573–586

    Article  PubMed  CAS  Google Scholar 

  • Jana S, Abdel Dayem HM (2006) Basis of tumor imaging 2: principles of tumor pathology and biology. In: Elgazzar A (ed) The pathologic basis of nuclear medicine, 2nd edn. Spriger, Berlin

    Google Scholar 

  • Jayson GC, Zweit J, Jackson A, et al (2002) Molecular imaging and biological evaluation of HuMV833 anti-VEGF antibody: implications for trial design of antiangiogenic antibodies. J Natl Cancer Inst 94:1484–1493

    PubMed  CAS  Google Scholar 

  • Jensen EV, DeSombre ER, Jungblut PW (1967) Estrogen receptors in hormone-responsive tissue and tumors. In: Wissler RW, Dao TL, Wood S Jr (eds) Endogenous factors influencing host tumor balance. University of Chicago Press, Chicago

    Google Scholar 

  • Jin H, Varner J (2004) Integrins: roles in cancer development and as treatment targets. Br J Cancer 90:561–565

    Article  PubMed  CAS  Google Scholar 

  • Kelloff GJ, Krohn KA, Larson SM, et al (2005) The progress and promise of molecular imaging probes in oncologic drug development. Clin Cancer Res 11:7967–7985

    Article  PubMed  CAS  Google Scholar 

  • Kemerink GJ, Liu X, Kieffer D, et al (2003) Safety, biodistribu-tion, and dosimetry of 99mTc-HYNIC-annexin V, a novel human recombinant annexin V for human application. J Nucl Med 44:947–952

    PubMed  CAS  Google Scholar 

  • Kenis H, van Genderen H, Bennaghmouch A, et al (2004) Cell surface-expressed phosphatidylserine and annexin A5 open a novel portal of cell entry. J Biol Chem 279: 52623–52629

    Article  PubMed  CAS  Google Scholar 

  • Kiesewetter DO, Kilbourn MR, Landvatter SW, et al (1984) Preparation of four fluorine-18-labeled estrogens and their selective uptakes in target tissues of immature rats. J Nucl Med 25:1212–1221

    PubMed  CAS  Google Scholar 

  • Kirsch DG, Kastan MB (1998) Tumor suppressor p53: implications for tumor development and prognosis. J Clin Oncol 16:3158–3168

    PubMed  CAS  Google Scholar 

  • Köhler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497

    Article  PubMed  Google Scholar 

  • Kowalski J, Henze M, Schuhmacher J, et al (2003) Evaluation of positron emission tomography imaging using [68Ga]-DOTA-DPhe1-Tyr3-octreotide in comparison to [111In]-DTPAOC SPECT: first results in patients with neuroendocrine tumors. Mol Imaging Biol 5:42–48

    Article  PubMed  Google Scholar 

  • Krammer, PH (2000) CD95's deadly mission in the immune system. Nature 407:789–795

    Article  PubMed  CAS  Google Scholar 

  • Kumar CC (2003) Integrin αVβ3 as a therapeutic target for blocking tumor-induced angiogenesis. Curr Drug Targets 4:123–131

    Article  PubMed  CAS  Google Scholar 

  • Kumar V, Cotran RS, Robbins SL (2003) Basic pathology, 6th edn. Saunders, Philadelphia

    Google Scholar 

  • Kwee SA, DeGrado TR, Talbot JN, et al (2007) Cancer imaging with fluorine-18–labeled choline derivatives. Semin Nucl Med 37:420–428

    Article  PubMed  Google Scholar 

  • Langen KJ, Jarosch M, Muhlensiepen H, et al (2003) Comparison of fluorotyrosines and methionine uptake in F98 rat gliomas. Nucl Med Biol 30:501–508

    Article  PubMed  CAS  Google Scholar 

  • Langen KJ, Hamacher K, Weckesser M, et al (2006) O-(2-[18F] fluoroethyl)-L-tyrosine: uptake mechanisms and clinical applications. Nucl Med Biol 33:287–294

    Article  PubMed  CAS  Google Scholar 

  • Lebtahi R, Le Cloirec J, Houzard C, et al (2002) Detection of neuroendocrine tumors: 99mTc-P829 scintigraphy compared with 111In-pentetreotide scintigraphy. J Nucl Med 43:889–895

    PubMed  CAS  Google Scholar 

  • Lee ST, Scott AM (2007) Hypoxia positron emission tomography imaging with 18F-fluoromisonidazole. Semin Nucl Med 37:451–461

    Article  PubMed  Google Scholar 

  • Lewis JS, Welch MJ (2001) PET imaging of hypoxia. Q J Nucl Med 45:183–188

    PubMed  CAS  Google Scholar 

  • Linden HM, Stekhova SA, Link JM, et al (2006) Quantitative fluoroestradiol positron emission tomography imaging predicts response to endocrine treatment in breast cancer. J Clin Oncol 24:2793–2799

    Article  PubMed  CAS  Google Scholar 

  • Link JM, Stekhova SA, Li X, et al (2007) Site-specific labeling of Annexin-V for in vivo imaging of cell death. J Label Compds Radiopharm 50(S1):S24

    Google Scholar 

  • Livingston RB, Ambus U, George SL, et al (1974) In vitro determination of thymidine-[H-3] labeling index in human solid tumors. Cancer Res 34:1376–1380

    PubMed  CAS  Google Scholar 

  • Luxen A, Guillaume M, Melega WP, et al (1992) Production of 6-[18F]fluoro-L-dopa and its metabolism in vivo— a critical review. Int J Rad Appl Instrum B 19:149–158

    PubMed  CAS  Google Scholar 

  • Maecke HR, Hofmann M, Haberkorn U (2005) 68Ga-labeled peptides in tumor imaging. J Nucl Med 46(s1):172S–178S

    PubMed  CAS  Google Scholar 

  • Mankoff DA, Tewson TJ, Eary JF (1997) Analysis of blood clearance and labeled metabolites for the estrogen receptor tracer [F-18]-16 alpha-fluoroestradiol (FES). Nucl Med Biol 24:341–348

    Article  PubMed  CAS  Google Scholar 

  • Mankoff DA, Shields AF, Krohn KA (2005) PET imaging of cellular proliferation. Radiol Clin N Am 43:153–167

    Article  PubMed  Google Scholar 

  • Margolis DJA, Hoffman JM, Herfkens RJ, et al (2007) Molecular imaging techniques in body imaging. Radiology 245: 333–356

    Article  PubMed  Google Scholar 

  • McEwan AJ, Shapiro B, Sisson JC, et al (1985) Radio-iodobenzylguanidine for the scintigraphic location and therapy of adrenergic tumors. Semin Nucl Med 5:132–153

    Article  Google Scholar 

  • Meisetschlager G, Stahl A, et al (2006) Gluc-Lys([18F]FP)-TOCA PET in patients with SSTR-positive tumors: biodis-tribution and diagnostic evaluation compared with [111In] DTPA-octreotide. J Nucl Med 47:566–573

    PubMed  Google Scholar 

  • Mintun MA, Welch MJ, Siegel BA, et al (1988) Breast cancer: PET imaging of estrogen receptors. Radiology 169:45–48

    PubMed  CAS  Google Scholar 

  • Mosselman S, Pohlman J, Dijkema R, et al (1996) Identification and characterisation of a novel human estrogen receptor. FEBS Lett 392:49–53

    Article  PubMed  CAS  Google Scholar 

  • Nagengast WB, de Vries EG, Hospers GA, et al (2007) In vivo VEGF imaging with radiolabeled bevacizumab in a human ovarian tumor xenograft. J Nucl Med 48:1313–1319

    Article  PubMed  CAS  Google Scholar 

  • Nass SJ, Moses HL (eds) (2007) Cancer biomarkers: the promises and challenges of improving detection and treatment. The National Academies Press, Washington DC

    Google Scholar 

  • Oberg K (2003) Diagnosis and treatment of carcinoid tumors. Expert Rev Anticancer Ther 3:863–877

    Article  PubMed  Google Scholar 

  • Orlefors H (2003) Positron emission tomography in the management of neuroendocrine tumors. PhD Thesis, Uppsala University, Sweden

    Google Scholar 

  • Orlefors H, Sundin A, Ahlstrom H, et al (1998) Positron emission tomography with 5-hydroxytryprophan in neuroendo-crine tumors. J Clin Oncol 16:2534–2541

    PubMed  CAS  Google Scholar 

  • Orlefors H, Sundin A, Garske U, et al (2005) Whole-body 11C-5-hydroxytrypto-phan positron emission tomography as a universal imaging technique for neuroendocrine tumors — comparison with somatostatin receptor scintigraphy and computed tomography. J Clin Endocrinol Metab 90:3392–3400

    Article  PubMed  CAS  Google Scholar 

  • Orlefors H, Sundin A, Lu L, et al (2006) Carbidopa pretreatment improves image interpretation and visualisation of carcinoid tumours with 11C-5-hydroxytryptophan positron emission tomography. Eur J Nucl Med Mol Imaging 33:60–65

    Article  PubMed  CAS  Google Scholar 

  • Oyama N, Miller TR, Dehdashti F, et al (2003) 11C-acetate PET imaging of prostate cancer: detection of recurrent disease at PSA relapse. J Nucl Med 44:549–555

    PubMed  CAS  Google Scholar 

  • Pearse AG (1980) The APUD concept and hormone production. Clin Endocrinol Metab 9:211–222

    PubMed  CAS  Google Scholar 

  • Peñuelas I, Haberkorn U, Yaghoubi S, et al (2005) Gene therapy imaging in patients for oncological applications. Eur J Nucl Med Mol Imaging 32:S384–S403

    Article  PubMed  Google Scholar 

  • Perik PJ, Lub-De Hooge MN, Gietema JA, et al (2006) Indium-111-labeled trastuzumab scintigraphy in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer. J Clin Oncol 24:2276–2282

    Article  PubMed  CAS  Google Scholar 

  • Philpott GW, Schwarz SW, Anderson CJ, et al (1995) RadioimmunoPET: detection of colorectal carcinoma with positron-emitting copper-64-labeled monoclonal antibody. J Nucl Med 36:1818–1824

    PubMed  CAS  Google Scholar 

  • Piert M, Machulla HJ, Picchio M, et al (2005) Hypoxia-specific tumor imaging with 18F-fluoroazomycin arabinoside. J Nucl Med 46:106–113

    PubMed  Google Scholar 

  • Ponde DE, Oyama N, Dence CS, et al (2003) [18F]-Fluoroacetate, an analogue of C-11 acetate for tumor imaging. J Nucl Med 44:296

    Google Scholar 

  • Ponde DE, Dence CS, Oyama N, et al (2007) 18F-Fluoroacetate: a potential acetate analog for prostate tumor imaging- in vivo evaluation of 18F-fluoroacetate versus 11C-acetate. J Nucl Med 48:420–428

    PubMed  CAS  Google Scholar 

  • Pugh CW, Ratcliffe PJ (2003) Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med 9:677–684

    Article  PubMed  CAS  Google Scholar 

  • Rajendran JG, Mankoff DA (2007) Beyond detection: novel applications for PET imaging to guide cancer therapy. J Nucl Med 48:855–856

    Article  PubMed  Google Scholar 

  • Rajendran JG, Schwartz DL, O'Sullivan J, et al (2006) Tumor hypoxia imaging with [F-18] fluoromisonidazole positron emission tomography in head and neck cancer. Clin Cancer Res 12:5435–5441

    Article  PubMed  CAS  Google Scholar 

  • Rasey JS, Grunbaum Z, Magee S, et al (1987) Characterization of radiolabeled fluoromisonidazole as a probe for hypoxic cells. Radiat Res 111:292–304

    Article  PubMed  CAS  Google Scholar 

  • Rasey JS, Hofstrand PD, Chin LK, et al (1999) Characterization of [18F]fluoroetanidazole, a new radiopharmaceutical for detecting tumor hypoxia. J Nucl Med 40:1072–1079

    PubMed  CAS  Google Scholar 

  • Reske SN, Blumstein NM, Neumaier B, et al (2006) Imaging prostate cancer with 11C-Choline PET/CT. J Nucl Med 47:1249–1254

    PubMed  CAS  Google Scholar 

  • Reubi JC (2003) Peptide receptors as molecular targets for cancer diagnosis and therapy. Endocr Rev 24:389–427

    Article  PubMed  CAS  Google Scholar 

  • Reubi JC, Waser B (2003) Concomitant expression of several peptide receptors in neuroendocrine tumours: molecular basis for in vivo multireceptor tumour targeting. Eur J Nucl Med Mol Imaging 30:781–793

    PubMed  CAS  Google Scholar 

  • Reubi JC, Laissue J, Krenning EP, et al (1992) Somatostatin receptors in human cancer: incidence, characteristics, functional correlates and clinical implication. J Steroid Biochem Mol Biol 43:27–35

    Article  PubMed  CAS  Google Scholar 

  • Reubi JC, Schar JC, Waser B, et al (2000) Affinity profiles for human somatostatin receptor subtypes SST1-SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use. Eur J Nucl Med 27:273–282

    Article  PubMed  CAS  Google Scholar 

  • Reubi JC, Mäcke HR, Krenning EP (2005) Candidates for pep-tide receptor radiotherapy today and in the future. J Nucl Med 46:67S–75S

    PubMed  CAS  Google Scholar 

  • Ribom D, Eriksson A, Hartman M, et al (2001) Positron emission tomography (11)C-methionine and survival in patients with low-grade gliomas. Cancer 92:1541–1549

    Article  PubMed  CAS  Google Scholar 

  • Roivainen A, Forsback S, Grönroos T, et al (2000) Blood metabolism of [methyl-11C]choline; implications for in vivo imaging with positron emission tomography. Eur J Nucl Med 27:25–32

    Article  PubMed  CAS  Google Scholar 

  • Rufini V, Calcagni ML, Baum RP (2007) Imaging of neuroendo-crine tumors. Semin Nucl Med 36:228–247

    Article  Google Scholar 

  • Salskov A, Tammisetti VS, Grierson J, et al (2007) FLT: measuring tumor cell proliferation in vivo with positron emission tomography and 3′-Deoxy-3′-[18F]fluorothymidine. Semin Nucl Med 37:429–439

    Article  PubMed  Google Scholar 

  • Schiepers C, Nuytes J, Bormans G, et al (1997) Fluoride kinetics of the axial skeleton measured in vivo with fluorine-18-fluo-ride PET. J Nucl Med 38:1970–1976

    PubMed  CAS  Google Scholar 

  • Schoder H, Larson SM (2004) Positron emission tomography for prostate, bladder, and renal cancer. Semin Nucl Med 34:274–292

    Article  PubMed  Google Scholar 

  • Schöder H, Ong SC (2008) Fundamentals of molecular imaging: rationale and applications with relevance for radiation oncology Semin Nucl Med 38:119–128

    Article  PubMed  Google Scholar 

  • Schuster DM, John R, Votaw JR, Nieh PT, et al (2007) Initial experience with the radiotracer anti-1-amino-3-18F-fluorocy-clobutane-1-carboxylic acid with PET/CT in prostate carcinoma. J Nucl Med 48:56–63

    PubMed  CAS  Google Scholar 

  • Seibyl JP, Chen W, Silverman DHS (2007) 3,4-Dihydroxy-6-[18F]-fluoro-L-phenylalanine positron emission tomography in patients with central motor disorders and in evaluation of brain and other tumors. Semin Nucl Med 37:440–450

    Article  PubMed  Google Scholar 

  • Seimbille Y, Ali H, van Lier JE (2002) Synthesis of 2, 16α- and 4,16α difluoroestradiols and their 11β-methoxy derivatives as potential estrogen receptor-binding radiopharmaceuticals. J Chem Soc Perkin Trans 1:657–663

    Article  CAS  Google Scholar 

  • Seitz U, Wagner M, Neumaier B, et al (2002) Evaluation of pyrimidine metabolising enzymes and in vitro uptake of 3′-[18F]fluoro-3′-deoxythymidine ([18F]FLT) in pancreatic cancer cell lines. Eur J Nucl Med Mol Imaging 29: 1174–1181

    Article  PubMed  CAS  Google Scholar 

  • Sharkey RM, Goldenberg DM (2005) Perspectives on cancer therapy with radiolabeled monoclonal antibodies J Nucl Med 46:115S–127S

    PubMed  CAS  Google Scholar 

  • Shields AF (2003) PET imaging with 18F-FLT and thymidine analogs: promise and pitfalls. J Nucl Med 44:1432–1434

    PubMed  CAS  Google Scholar 

  • Shields AF, Grierson JR, Kozawa SM, et al (1996) Development of labeled thymidine analogs for imaging tumor proliferation. Nucl Med Biol 23:17–22

    Article  PubMed  CAS  Google Scholar 

  • Shields AF, Grierson JR, Dohmen BM, et al (1998) Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat Med 4:1334–1336

    Article  PubMed  CAS  Google Scholar 

  • Shiue CY, Welch MJ (2004) Update on PET radiopharmaceuticals: life beyond fluorodeoxyglucose. Radiol Clin N Am 42:1033–1053

    Article  PubMed  Google Scholar 

  • Shively JE (2007) 18F Labeling for immuno-PET: where speed and contrast meet. J Nucl Med 48:171–172

    Google Scholar 

  • Shoup TM, Olson JMH, Votaw J, et al (1999) Synthesis and evaluation of [18F] 1-amino-3-fluorocyclobutane-l-carboxy-lic acid to image brain tumors. J Nucl Med 40:331–338

    PubMed  CAS  Google Scholar 

  • Smith-Jones PM, Solit DB, Akhurst T, et al (2004) Imaging the pharmacodynamics of HER2 degradation in response to Hsp90 inhibitors. Nat Biotechnol 22:701–706

    Article  PubMed  CAS  Google Scholar 

  • Sols A, Crane RA (1954) Substrate specificity of brain hexoki-nase. J Biol Chem 210:581–595

    PubMed  CAS  Google Scholar 

  • Stocklin GL (1998) Is there a future for clinical fluorine-18 radiopharmaceuticals (excluding FDG)? Eur J Nucl Med 25:1612–1616

    PubMed  CAS  Google Scholar 

  • Sun H, Sloan A, Mangner T, et al (2005) Imaging DNA synthesis in vivo with [F-18]FMAU and positron emission tomography in patients with cancer. Eur J Nucl Med Mol Imaging 32:15–22

    Article  PubMed  CAS  Google Scholar 

  • Sundararajan L, Linden HM, Link JM, et al (2007) 18F-Fluoroestradiol. Semin Nucl Med 37:470–476

    Article  PubMed  Google Scholar 

  • Sundin A, Eriksson B, Bergstrom M, et al (2000) Demonstration of (11C) 5-hydroxy-l-tryptophan uptake and decarbox-ylation in carcinoid tumors by specific positioning labeling in positron emission tomography. Nucl Med Biol 1:33–41

    Article  Google Scholar 

  • Sundin A, Eriksson B, Bergstrom M, et al (2004) PET in the diagnosis of neuroendocrine tumors. Ann N Y Acad Sci 1014:246–257

    Article  PubMed  CAS  Google Scholar 

  • Swinnen JV, Van Veldhoven PP, Timmermans L, et al (2003) Fatty acid synthase drives the synthesis of phospholipids partitioning into detergent-resistant membrane microdomains. Biochem Biophys Res Commun 302:898–903

    Article  PubMed  CAS  Google Scholar 

  • Tait JF, Cerqueira MD, Dewhurst TA (1994) Evaluation of annexin V as a platelet-directed thrombus targeting agent. Thromb Res 75:491–501

    Article  PubMed  CAS  Google Scholar 

  • Tedeschi G, Lundbom N, Raman R, et al (1997) Increased cho-line signal coinciding with malignant degeneration of cerebral gliomas: a serial proton magnetic resonance spectroscopy imaging study. J Neurosurg 87:516–524

    Article  PubMed  CAS  Google Scholar 

  • Urtasun RC, Parliament MB, McEwan AJ, et al (1996) Measurement of hypoxia in human tumours by non-invasive SPECT imaging of iodoazomycin arabinoside. Br J Cancer Suppl 27:S209–S212

    CAS  Google Scholar 

  • Vallabhajosula S (2007) 18F-Labeled PET radiopharmaceuticals in oncology: an overview of radiochemistry and mechanisms of tumor localization. Semin Nucl Med 37:400–419

    Article  PubMed  Google Scholar 

  • Van de Wiele C, De Vos F, Slegers G, et al (2000) Radiolabeled estradiol derivatives to predict response to hormonal treatment in breast cancer: a review. Eur J Nucl Med 27: 1421–1433

    Article  PubMed  Google Scholar 

  • Van Dongen GAMS, Visser GWM, Lub-De Hoodge MN, et al (2007) Immuno-PET: a navigator in monoclonal antibody development and applications. The Oncologist 12: 1379–1389

    Article  PubMed  CAS  Google Scholar 

  • Varagnolo L, Stokkel MPM, Mazzi U, et al (2000) 18F-labeled radiopharmaceuticals for PET in oncology, excluding FDG. Nucl Med Biol 27:103–112

    Article  PubMed  CAS  Google Scholar 

  • Vaupel P, Schlenger K, Hoeckel M (1992) Blood flow and tissue oxygenation of human tumors: an update. Adv Exp Med Biol 317:139–151

    PubMed  CAS  Google Scholar 

  • Virgolini I, Pangerl T, Bischof C, et al (1997) Somatostatin receptor subtype expression in human tissues: a prediction for diagnosis and treatment of cancer? Eur J Clin Invest 27:645–647

    Article  PubMed  CAS  Google Scholar 

  • Volker JF et al (1940) The absorption of fluorides by enamel, dentin, bone, and hydroxyapatite as shown by the radioactive isotope. J Biol Chem 134:543–548

    CAS  Google Scholar 

  • Vollenweider-Zerargui L, Barrelet L, Wong Y, et al (1986) The predictive value of estrogen and progesterone receptors' concentrations on the clinical behavior of breast cancer in women: clinical correlation on 547 patients. Cancer 57:1171–1180

    Article  PubMed  CAS  Google Scholar 

  • Wafelman AR, Hoefnagel CA, Maes RAA, et al (1994) Radioiodinated metaiodobenzylguanidine: a review of its biodistribution and pharmacokinetics, drug interaction, cyto-toxicity and dosimetry. Eur J Nucl Med 21:545–559

    Article  PubMed  CAS  Google Scholar 

  • Wahl RL (2002) Principles of cancer imaging with fluorodeoxy-glucose, In: Wahl RL, Buchanan JW (eds) Principles and practice of positron emission tomography. Williams & Wilkins, Philadelphia

    Google Scholar 

  • Warburg O (1956) On the origin of cancer cells. Science 123:309–314

    Article  PubMed  CAS  Google Scholar 

  • Warburg O, Posener K, Negelein E (1924) The metabolism of cancer cells. Biochem Zeitschr 152:129–169

    Google Scholar 

  • Wester HJ, Schottelius M, Scheidhauer K (2003) PET imaging of somatostatin receptors: design, synthesis and preclinical evaluation of a novel 18F-labelled, carbohydrated analogue octreotide. Eur J Nucl Med Mol Imaging 30:117–122

    Article  PubMed  CAS  Google Scholar 

  • Wettstein M, Weik C, Holneicher C, et al (1998) Betaine as an osmolyte in rat liver: metabolism and cell-to-cell interactions. Hepatology 27:787–793

    Article  PubMed  CAS  Google Scholar 

  • Whitmore GF, Varghese AJ (1986) The biological properties of reduced nitroheterocyclics and possible underlying biochemical mechanisms. Biochem Pharmacol 35:97–103

    Article  PubMed  CAS  Google Scholar 

  • Wieland DM, Wu JL, Brown LE, et al (1980) Radiolabeled adrenergic neuron blocking agents: adrenomedullary imaging with 131I-iodobenzylguanidine. J Nucl Med 21:349–353

    PubMed  CAS  Google Scholar 

  • Wild D, Mäcke HR, Waser B, et al (2005) 68Ga-DOTANOC: a first compound for PET imaging with high affinity for soma-tostatin receptor subtypes 2 and 5. Eur J Nucl Med Mol Imaging 32:724

    Article  PubMed  Google Scholar 

  • Wu AM, Yazaki PJ, Tsai S, et al (2000) High-resolution micro-PET imaging of carcinoembryonic antigen-positive xeno-grafts by using a copper-64-labeled engineered antibody fragment. Proc Natl Acad Sci U S A 97:8495–8500

    Article  PubMed  CAS  Google Scholar 

  • Wu Y, Zhang X, Xiong Z, et al (2005) microPET imaging of glioma αVβ3 integrin expression using 64Cu-labeled tetra-meric RGD Peptide. J Nucl Med 46:1707–1718

    PubMed  CAS  Google Scholar 

  • Yoshimoto M, Waki A, Obata A, et al (2004) Radiolabeled cho-line as a proliferation marker: comparison with radiolabeled acetate. Nucl Med Biol 31:859–865

    Article  PubMed  CAS  Google Scholar 

  • Zanzonico P, O'Donoghue J, Chapman JD, et al (2004) Iodine-124-labeled iodoazomycin-galactoside imaging of tumor hypoxia in mice with serial micro-PET scanning. Eur J Nucl Med Mol Imaging 31:117–128

    Article  PubMed  Google Scholar 

  • Zeisel SH (1981) Dietary choline: biochemistry, physiology, and pharmacology. Annu Rev Nutr 1:95–121

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Xiong Z, Wu Y, et al (2006) Quantitative PET imaging of tumor integrin αVβ3 expression with 18F-FRGD2. J Nucl Med 47:113–121

    PubMed  CAS  Google Scholar 

  • Zuckier LS, DeNardo GL (1997) Trials and tribulations: oncological antibody imaging comes to the fore. Semin Nucl Med 27:10–29

    Article  PubMed  CAS  Google Scholar 

  • Zwaal RFA, Comfurius P, Bevers EM (2005) Surface exposure of phosphatidylserine in pathological cells. Cell Mol Life Sci 62:971–988

    Article  PubMed  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2009). Molecular Imaging in Oncology. In: Molecular Imaging. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76735-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76735-0_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76734-3

  • Online ISBN: 978-3-540-76735-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics