Skip to main content

Integrated Methods for Urban Groundwater Management Considering Subsurface Heterogeneity

  • Chapter
Quantitative Information Fusion for Hydrological Sciences

Part of the book series: Studies in Computational Intelligence ((SCI,volume 79))

Open space in urban areas is very rare and new infrastructure is increasingly constructed in the subsurface. These constructions may temporarily affect urban groundwater systems during construction and permanently after completion. As regards these impacts together with ancient contaminated industrial sites, particular focus was placed on determining the data required to understand changes affecting groundwater flow and transport. The extended knowledge of groundwater flow regimes could lead to reducing and minimizing, as far as possible, the negative impacts throughout the construction phases, and to developing sustainable groundwater use and management tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams EE, Gelhar LW (1992) Field study of dispersion in a heterogeneous aquifer, 2, Spatial moment analysis. Water Resour Res 28:3293–3308

    Article  Google Scholar 

  • Allen JRL (1978) Studies in fluviatile sedimentation: An exploratory quantitative model for the architecture of avulsion-controlled alluvial suits. Sed Geol 21:129–147

    Article  Google Scholar 

  • Anderson MP, Aiken JS, Webb EK, Mickelson DM (1999) Sedimentology and hydrogeology of two braided stream deposits. Sed Geol 129:187–199

    Article  Google Scholar 

  • Anderson MP, Woessner WW (1992) Applied groundwater modeling. Academic Press, San Diego

    Google Scholar 

  • Anderson MP (1989) Hydrogeologic sedimentary structure models to delineate large-scale spatial trends in glacial and glaciofluvial sediments. Geological Society of America Bulletin 101:501–511

    Article  Google Scholar 

  • Ashmore P (1993) Anabranch confluence kinetics and sedimentation processes in gravel braided streams. In: Best JL, Bristow CS (eds) Braided Rivers, Geological Society Spec Publ 75:129–146

    Google Scholar 

  • Ashmore P, Parker G (1983) Confluence scour in coarse braided streams. Water Resour Res 19:392–402

    Article  Google Scholar 

  • Ashworth PJ, Best JL, Jones M (2004) The relationship between sediment supply and avulsion frequency in braided rivers. Geol 32:21–24

    Article  Google Scholar 

  • Ashworth PJ, Best JL, Peakall J, Lorsong JA (1999) The influence of aggradation rate on braided alluvial architecture: field study and physical scale modelling of the Ashburton River gravels, Canterbury Plains, New Zealand. In: Smith ND, Rogers J (eds). Fluvial Sedimentology VI. Spec Publ Int Ass Sediment 28:333–346

    Google Scholar 

  • Barrash W, Clemo T (2002) Hierarchical geostatistics and multifacies systems. Boise Hydrogeophysical Research Site, Boise, Idaho, Water Resour Res 38(10):1196

    Article  Google Scholar 

  • Boggs MJ, Young SC, Beard LM, Gelhar LW, Rehfeld, KR, Adams, EE (1992) Field study of dispersion in a heterogeneous aquifer. 1. Overview and site description. Water Resour Res 28(12):3281–3291

    Article  Google Scholar 

  • Bridge JS, Lunt IA (2006) Depositional models of braided rivers. In: Sambrook-Smith GH, Best JL, Bristow CS, Petts GE (eds). Braided Rivers: Process, Deposits, Ecology and Management. IAS Special Publication 36:11–50

    Google Scholar 

  • Bridge JS (1993) The interaction between channel geometry, water flow, sediment transport and deposition in braided rivers. In: Best JL, Bristow CS (eds) Braided Rivers. Geological Society Spec Publ 75:13–71

    Google Scholar 

  • Brierley GJ (1991) Bar sedimentology of the Squamish river, British Columbia: definition and application of morphostratigraphic units. J of Sed Petr 61:211–225

    Google Scholar 

  • Carle SF, LaBolle EM, Weissmann GS, Van Brocklin D, Fogg GE (1998) Conditional simulation of hydrofacies architecture: A transition probability / Markov approach. In: Fraser GS, Davis JM (eds). Hydrogeologic Models of Sedimentary Aquifers. SEPM, Concepts in Hydrogeology and Environmental Geology, 1:147–170

    Google Scholar 

  • Carrera J (1993) An overview of uncertainties in modeling groundwater solute transport. J of Con Hyd 13(1–4):23–48

    Article  Google Scholar 

  • Chiang W-H (2005) 3D-Groundwater Modeling with PMWIN – A simulation system for modeling groundwater flow and transport processes. 2nd edn Springer, Berlin, 397pp

    Google Scholar 

  • Church M (2002) Geomorphic thresholds in riverine landscapes. First international symposium on landscape dynamics of riverine corridors, Ascona, Switzerland, March 2001. Freshwat Biol 47:541–557

    Article  Google Scholar 

  • Dagan G (2002) An overview of stochastic modelling of groundwater flow and transport. From theory to applications. EOS (Trans Am Geophys Soc), 83/53:621–625

    Google Scholar 

  • de Marsily G, Delay F, Gonçalvès J, Renard P, Teles V, Violette S (2005) Dealing with spatial heterogeneity. Hydrogeol J 13:161–183

    Article  Google Scholar 

  • de Marsily G, Schafmeister MT, Delay F, Teles V (1998) On some current methods to represent the heterogeneity of natural media in hydrogeology. Hydrogeol J 6:115–130

    Article  Google Scholar 

  • Deutsch CV, Journel AG (1998) GSLIB: Geostatistical software library and user’s guide, 2nd edn Oxford University Press, Oxford, 369pp

    Google Scholar 

  • Deutsch CV, Wang L (1996) Hierarchical object-based stochastic modelling of fluvial reservoirs. Math Geol 28:857–880

    Article  Google Scholar 

  • Environmental Modeling Systems Inc.(2006) GMS, groundwater modeling system v6.0. http://www.ems-i.com

  • Flynn R (2003) Virus transport and attenuation in perialpine gravel aquifers. PhD. Thesis, University of Neuchâtel, Switzerland, 178pp

    Google Scholar 

  • Fogg GE, Noyes CD, Carle SF (1998) Geologically based model of heterogeneous hydraulic conductivity in an alluvial setting. Hydrogeol J 6:131–143

    Article  Google Scholar 

  • Frind EO, Sudicky EA, Schellenberg SL (1988) Micro-scale modelling in the study of plume evolution in heterogeneous media, In: Custodio E et al. (eds), Groundwater Flow and Quality Modelling. Reidel, Dordrecht: 439–461

    Google Scholar 

  • Gelhar LW (1986) Stochastic subsurface hydrology from theory to applications. Water Resour Res 22:135S–145S

    Article  Google Scholar 

  • Graf H, Schäfer W (2002) Simulation des Nitrattransports im Einzugsgebiet eines Wasserwerks. Grundwasser 4/2002:233–242

    Article  Google Scholar 

  • Heller P, Paola C (1992) The large-scale dynamics of grain-size variation in alluvial basins, 2: Application to syntectonic conglomerate. Basin Res 4:73–90

    Google Scholar 

  • Hill MC, Banta ER, Harbaugh AW, Anderman ER (2000) MODFLOW-2000, the U.S. Geological Survey. Modular Ground-Water Model—User guide to the observation, sensitivity, and parameter-estimation processes and three post-processing programs: U.S. Geological Survey Open-File Report 00-184, 210 pp

    Google Scholar 

  • Huggenberger P, Regli C (2006) A sedimentological model to characterise braided river deposits for hydrogeological applications. In: Sambrook-Smith GH, Best JL, Bristow CS, Petts GE (eds). Braided Rivers: Process, Deposits, Ecology and Management. IAS Special Publication 36:51–74

    Google Scholar 

  • Huggenberger P, Epting J, Spottke I, Regli C, Zechner E (2006) Fluss-Grundwasser-Interaktion, Interreg III Projekt A MoNit: Modellierung der Grundwasserbelastung durch Nitrat im Oberrheingraben, Landesamt für Umwelt, Messungen und Naturschutz Baden-Württemberg, Karlsruhe

    Google Scholar 

  • Huggenberger P, Aigner T (1999) Introduction to the special issue on aquifer-sedimentology: problems, perspectives and modern approaches. Sedimentary Geology 129:179–186

    Article  Google Scholar 

  • Huggenberger P, Siegentaler C, Stauffer F (1988) Grundwasserströmung in Schottern: Einfluss von Ablagerungsformen auf die Verteilung der Grundwasserfliessgeschwindigkeit. Wasserwirtschaft 78:202–212

    Google Scholar 

  • Journel AG, Huijbregts CJ (1989) Mining Geostatistics. Academic Press, New York

    Google Scholar 

  • Jussel P, Stauffer F, Dracos T (1994) Transport modeling in heterogeneous aquifers: 1. statistical description and numerical generation of gravel deposits. Water Resour Res 30(6):1803–1817

    Article  Google Scholar 

  • Kirchhofer RT (2006) GeoData. Geological Data-base of the city of Basel and northwestern Switzerland

    Google Scholar 

  • Klingbeil R, Kleineidam S, Asprion U, Aigner T, Teutsch G (1999) Relating lithofacies to hydrofacies structure: outcrop-based hydrogeological characterisation of Quaternary gravel deposits. Sed Geol 129:299–310

    Article  Google Scholar 

  • Koltermann CE, Gorelick SM (1996) Heterogeneity in sedimentary deposits: A review of structure-imitating, process-imitating, and descriptive approaches. Water Resour Res 32:2617–2658

    Article  Google Scholar 

  • Mackay DM, Freyberg DL, Roberts PV, Cherry JA (1986) A natural gradient experiment on solute transport in a sand aquifer. 1. Approach and overview of plume movement. Water Resour Res 22(13):2017–2029

    Article  Google Scholar 

  • Maxwell RM, Pelmulder SD, Tompson AFB, Kastenberg WE (1998) On the development of a new methodology for groundwater-driven health risk assessment. Water Resour Res 34(4): 833–847

    Article  Google Scholar 

  • Maxwell RM, Kastenberg WE (1999) Stochastic environmental risk analysis: an integrated methodology for predicting cancer risk from contaminated groundwater. Stochastic Environmental Research and Risk Assessment 13:27–47

    Article  MATH  Google Scholar 

  • McDonald MG, Harbaugh AW, Banta ER, Hill MC (2000) Modflow-2000. The U.S. geological survey modular ground-water model-user guide to modularization concepts and the ground-water flow process. US Geological Survey Open File Report 00-92

    Google Scholar 

  • McKenna SA, Poeter EP (1995) Field example of data fusion in site characterization. Water Resour Res 31:3229–3240

    Article  Google Scholar 

  • Miall AD (1985) Architectural-element analysis: A new method of sedimentary structure analysis applied to fluvial deposits. Earth-Science Rev 22:261–308

    Article  Google Scholar 

  • Miall AD (1978) Lithofacies types and vertical profile models in braided rivers: a summary. In: Miall AD (ed), Fluvial Sedimentology. Can Soc Pet Geol Mem 5:605–625

    Google Scholar 

  • National Research Council (1990) Groundwater models: Scientific and regulatory applications. National Academy Press, Washington, DC

    Google Scholar 

  • Nowak W, Cirpka OA (2006) Geostatistical inference of hydraulic conductivity and dispersivities from hydraulic heads and tracer data, Water Resour Res 42(8)

    Google Scholar 

  • Paola C, Heller P, Angevine C (1992) The large-scale dynamics of grain-size variation in alluvial basins, 1: Theory. Basin Res 4:73–90

    Google Scholar 

  • Proce CJ, Ritzi RW, Dominic DF, Dai Z (2004) Modeling multiscale heterogeneity and aquifer interconnectivity. Ground Water 42(5):658–670

    Article  Google Scholar 

  • Rauber M, Stauffer F, Huggenberger P, Dracos T (1998) A numerical three-dimensional conditioned/unconditioned stochastic sedimentary structure type model applied to a remediation well system. Water Resour Res 34(9):2225–2233

    Article  Google Scholar 

  • Regli C, Rosenthaler L, Huggenberger P (2004) GEOSSAV: a simulation tool for subsurface applications. Computers & Geosciences 30:221–238

    Article  Google Scholar 

  • Regli C, Rauber M, Huggenberger P (2003) Analyses of aquifer heterogeneity within a well capture zone, comparison of model data with field experiments: A case study from the river Wiese, Switzerland. Aquatic Sciences 65:111–128

    Google Scholar 

  • Regli C, Huggenberger P, Rauber M (2002) Interpretation of drill-core and georadar data of coarse gravel deposits. J of Hydrol 255:234–252

    Article  Google Scholar 

  • Rehfeldt KR, Boggs JM, Gelhar LW (1993) Field study of dispersion in a heterogeneous aquifer, 3, Geostatistical analysis of hydraulic conductivity. Water Resour Res 28:3309–3324

    Article  Google Scholar 

  • Rentzel P (1994) Geologisch-bodenkundliche Untersuchungen an den Niederterrassenfeldern bei Basel unter besonderer Berücksichtigung der späteiszeitlichen Fundstelle Basel-Gasfabrik, Jahresbericht der Archäologischen Bodenforschung des Kantons Basel-Stadt:31–52

    Google Scholar 

  • Rubin Y, Lunt IA, Bridge JS (2006) Spatial variability in river sediments and its link with river channel geometry. Water Resour Res 42(6)

    Google Scholar 

  • Schulze-Makuch D, Carlson DA, Cherkauer DS, Malik P (1999) Scale dependency of hydraulic conductivity in heterogeneous media. Ground Water 37(6):904–919

    Article  Google Scholar 

  • Siegenthaler C, Huggenberger P (1993) Pleistocene Rhine gravel: deposits of a braided river system with dominant pool preservation. In: Best JL, Bristow CS (eds) Braided Rivers. Geological Society Spec Publ 75:147–162

    Article  Google Scholar 

  • Sudicky EA (1986) A natural gradient experiment on solute transport in a sand aquifer: Spatial variability of hydraulic conductivity and its role in the dispersion process. Water Resour Res 22(13):2069–2082

    Article  Google Scholar 

  • Teles V, Delay F, de Marsily G (2004) Comparison of genesis and geostatistical methods for characterizing the heterogeneity of alluvial media: groundwater flow and transport simulations. J Hydrol; 294(1–3):103–121

    Article  Google Scholar 

  • Teutsch G, Kobus H (1990) The environmental research field site “Horkheimer Insel:” Research Program, instrumentation and first results. J Hydraulic Res 28(4):491–501

    Article  Google Scholar 

  • Tompson AFB, Gelhar LW (1990) Numerical simulation of solute transport in three-dimensional randomly heterogeneous porous media. Water Resour Res 26(10):2541–2562

    Google Scholar 

  • Wagner U, Huggenberger P, Schaub D, Thater M (2001) Interreg III, Erkundung der Grundwasserleiter und Böden im Hochrheintal. Herausgeber: Landratsamt Waldshut, pp101

    Google Scholar 

  • Webb EK, Anderson MP (1996) Simulation of preferential flow in three-dimensional, heterogeneous conductivity fields with realistic internal architecture. Water Resour Res 32:533–545

    Article  Google Scholar 

  • Webb EK (1994) Simulating the three-dimensional distribution of sediment units in braided-stream deposits. J Sediment Res B64:219–231

    Google Scholar 

  • Weissmann GS, Carle SF, Fogg GE (1999) Three-dimensional hydrofacies modeling based on soil surveys and transition probability geostatistics. Water Resour Res 35(6):1761–1770

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Epting, J., Huggenberger, P., Regli, C., Spoljaric, N., Kirchhofer, R. (2008). Integrated Methods for Urban Groundwater Management Considering Subsurface Heterogeneity. In: Cai, X., Yeh, T.C.J. (eds) Quantitative Information Fusion for Hydrological Sciences. Studies in Computational Intelligence, vol 79. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75384-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75384-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75383-4

  • Online ISBN: 978-3-540-75384-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics