Advertisement

Fate of Veterinary Medicines Applied to Soils

  • A. B. A. Boxall

Keywords

Veterinary Medicine Overland Flow Sorption Behavior Sorption Coefficient Environ Toxicol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Accinelli C, Koskines WC, Becker JM, Sadowsky MK (2007) Environmental fate of two sulfonamide antimicrobial agents in soil. Journal of Agricultural and Food Chemistry 55:2677–2682CrossRefGoogle Scholar
  2. Aga DS, Goldfish R, Kulshrestha P (2003) Application of ELISA in determining the fate of tetracyclines in land-applied livestock wastes. Analyst 128:658–662CrossRefGoogle Scholar
  3. Blackwell PA, Boxall ABA, Kay P, Noble H (2005) An evaluation of a lower tier exposure assessment model for veterinary medicines. J Agr Food Chem 53:2192–2201CrossRefGoogle Scholar
  4. Blackwell PA, Kay P, Boxall ABA (2007) The dissipation and transport of veterinary antibiotics in a sandy loam soil. Chemosphere 67:292–299CrossRefGoogle Scholar
  5. Böhm VR (1996) Auswirkungen von ruckstanden von antiinfektiva in tierischen ausscheidungen auf die gullebehandlung und den boden. Dtsch Tierarztl Wschr 103:237–284Google Scholar
  6. Björklund HV, Bondestam J, Bylund G (1990) Residues of oxytetracycline in wild fish and sediments from fish farms. Aquaculture 86:359–367CrossRefGoogle Scholar
  7. Boxall ABA, Blackwell PA, Cavallo R, Kay P, Tolls J (2002b) The sorption and transport of a sulphonamide antibiotic in soil systems. Toxicol Lett 131:19–28CrossRefGoogle Scholar
  8. Boxall ABA, Fogg LA, Kay P, Blackwell PA, Pemberton EJ, Croxford A (2003) Prioritisation of veterinary medicines in the UK environment. Toxicol Lett 142:207–218CrossRefGoogle Scholar
  9. Boxall ABA, Kolpin D, Halling Sørensen B, Tolls J (2003c) Are veterinary medicines causing environmental risks. Environ Sci Technol 36:286A–294ACrossRefGoogle Scholar
  10. Boxall ABA, Fogg LA, Kay P, Blackwell PA, Pemberton EJ, Croxford A (2004) Veterinary medicines in the environment. Rev Environ Contam Toxicol 182:1–91CrossRefGoogle Scholar
  11. Burkhardt M, Stamm S, Waul C, Singer H, Muller S (2005) Surface runoff and transport of sulfonamide antibiotics on manured grassland. Journal Environmental Quality 34:1363–1371CrossRefGoogle Scholar
  12. Brown CD, Hodgkinson RA, Rose DA, Syers JK, Wilcockson SJ (1995) Movement of pesticides to surface waters from a heavy clay soil. Pestic Sci 43:131–140CrossRefGoogle Scholar
  13. Carlson JC, Mabury SA (2006) Dissipation kinetics and mobility of chlortetracycline, tylosin, and monensin in an agricultural soil in Northumberland County, Ontario, Canada. Environmental Toxicology and Chemistry 25:1–10CrossRefGoogle Scholar
  14. Chien YH, Lai HT, Lui SM (1999) Modeling the effects of sodium chloride on degradation of chloramphenicol in aquaculture pond sediment. Sci Tot Environ 239:81–87CrossRefGoogle Scholar
  15. Coyne R, Hiney M, O’Connor B, Kerry J, Cazabon D, Smith P (1994) Concentration and persistence of oxytetracycline in sediments under a marine salmon farm. Aquaculture 123:31–42CrossRefGoogle Scholar
  16. Davis ML, Lofthouse TJ, Stamm JM (1993) Aquatic photodegradation of 14C-sarafloxicin hydrochloride. Poster presented at the American Chemical Society E-Fate meeting, 28th March, 1993Google Scholar
  17. Davis JG, Truman CC, Kim SC, Ascough JC, Carlson K (2006) Antibiotic transport via runoff and soil loss. J Environ Qual 35:2250–2260CrossRefGoogle Scholar
  18. De Liguoro M, Cibin V, Capolongo F, Halling-Sørensen B, Montesissa C (2003) Use of oxytetracycline and tylosin in intensive calf farming: evaluation of transfer to manure and soil. Chemosphere 52:200–212Google Scholar
  19. Gavalchin J, Katz SE (1994) The persistence of fecal-borne antibiotics in soil. J AOAC Int 77: 481–485Google Scholar
  20. Gilbertson TJ, Hornish RE, Jaglan PS, Koshy T, Nappier JL, Stahl GL, Cazers AR, Nappier JM, Kubicek MF, Hoffman GA, Hamlow P (1990) Environmental fate of ceftiofur sodium, a cephalosporin antibiotic. Role of animal excreta in its decomposition. J Agr Food Chem 38:890–894Google Scholar
  21. Grote M, Schwake-Anduschus C, Michel R, Stevens H, Heyser W, Langenkamper G, Betsche T, Freitag M (2007) Incorporation of veterinary antibiotics into crops from manured soils. Landbauforschung Volkenrode 57:25–32Google Scholar
  22. Halley BA, VandenHeuvel WJA, Wislocki PG (1993) Environmental effects of the usage of avemectins in livestock. Vet Parasitol 48:109–125CrossRefGoogle Scholar
  23. Halling-Sørensen B, Sengelov G, Tjornelund J (2002) Toxicity of tetracyclines and tetracycline degradation products to environmentally relevant bacteria, including selected tetracycline-resistant bacteria. Arch Environ Contam Toxicol 42:263–271CrossRefGoogle Scholar
  24. Halling-Sørensen B, Lykkeberg A, Ingerslev F, Blackwell P, Tjornelund J (2003) Chararacterisation of the abiotic degradation pathways of oxytetracyclines in soil interstitial water using LC-MS-MS. Chemosphere 50:1331–1342CrossRefGoogle Scholar
  25. Halling-Sørensen B, Jacobsen A-M, Jensen J, Sengelov G, Vaclavik E, Ingerslev F (2005) Dissipation and effects of chlortetracycline and tylosin in two agricultural soils: a field-scale study in Southern Denmark. Environ Toxicol Chem 24:802–810CrossRefGoogle Scholar
  26. Hamscher G, Abu-Quare A, Sczesny S, Höper H, Nau H (2000) Determination of tetracyclines and tylosin in soil and water samples from agricultural areas in lower Saxony, in: eds: van Ginkel, LA, Ruiter, A Proceedings of the Euroresidue IV conference, Veldhoven, Netherlands, 8–10 May 2000, National Institute of Public Health and the Environment (RIVM), BilthovenGoogle Scholar
  27. Hamscher G, Sczesny S, Hoper H, Nau H (2002) Determination of persistent tetracycline residues in soil fertilized with liquid manure by high performance liquid chromatography with electrospray ionization tandem mass spectrometry. Anal Chem 74:1509–1518CrossRefGoogle Scholar
  28. Hansen PK, Lunestad BT, Samuelsen OB (1993) Effects of oxytetracycline, oxolinic acid and flumequine on bacteria in an artificial marine fish farm sediment. Can J Microb 39:1307–1312Google Scholar
  29. Hektoen H, Berge JA, Hormazabal V, Yndestad M (1995) Persistence of antibacterial agents in marine sediments. Aquaculture 133:175–184CrossRefGoogle Scholar
  30. Hu D, Coats JR (2007) Aerobic degradation and photolysis of tylosin in water and soil. Environ Toxicol Chem 26:884–889CrossRefGoogle Scholar
  31. Ingerslev F, Halling-Sørensen B (2001) Biodegradability of metronidazole, olaquindox and tylosin and formation of tylosin degradation products in aerobic soil/manure slurries. Chemosphere 48:311–320Google Scholar
  32. Jacobsen P, Berglind L (1988) Persistence of oxytetracycline in sediments from fish farms. Aquaculture 70:365–370CrossRefGoogle Scholar
  33. Johnson AC, Haria AH, Bhardwaj CL, Williams RJ, Walker A (1996). Preferential flow pathways and their capacity to transport isoproturon in a structured clay soil. Pest Sci 48:225–237CrossRefGoogle Scholar
  34. Jones AD, Bruland, GL, Agrawal SG, Vasudevan D (2005) Factors influencing the sorption of oxytetracycline to soils. Environ Toxicol Chem 24:761–770CrossRefGoogle Scholar
  35. Kay P, Blackwell PA, Boxall ABA (2004) Fate and transport of veterinary antibiotics in drained clay soils. Environ Toxicol Chem 23:1136–1144CrossRefGoogle Scholar
  36. Kay P, Blackwell PA, Boxall ABA (2005a) A lysimeter experiment to investigate the leaching of veterinary antibiotics through a clay soil and comparison with field data. Environ Poll 134:333–341CrossRefGoogle Scholar
  37. Kay P, Blackwell PA, Boxall ABA (2005b) Column studies to investigate the fate of veterinary antibiotics in clay soils following slurry application to agricultural land. Chemosphere 60:497–507CrossRefGoogle Scholar
  38. Kay P, Blackwell PA, Boxall ABA (2005c) Transport of veterinary antibiotics in overland flow following the application of slurry to land. Chemosphere 59:951–959CrossRefGoogle Scholar
  39. Kladivko EJ, Van Scoyoc GE, Monke EJ, Oates KM, Pask WJ (1991) Pesticide and nutrient movement into subsurface tile drains on a silt loam soil in Indiana. J Environ Qual 20:264–270CrossRefGoogle Scholar
  40. Kreuzig R, Holtge S, Brunotte J, Berenzen N, Wogram J, Schulz R (2005) Test-plot studies on runoff of sulfonamides from manured soils after sprinkler irrigation. Environmental Toxicology and Chemistry 24:777–781CrossRefGoogle Scholar
  41. Loke ML, Ingerslev F, Halling-Sørensen B, Tjornelund J (2000) Stability of tylosin A in manure containing test systems determined by high performance liquid chromatography. Chemosphere 40:759–765CrossRefGoogle Scholar
  42. Lewis S (1998) Proposed environmental quality standards for sheep dip chemicals in water. Chlorfenvinphos, Coumaphos, Diazinon, Fenchlorphos, Flumethrin and Propetamphos – an update. Environment Agency, Draft R & D Report P128Google Scholar
  43. Lewis S, Watson A, Hedgecott S (1993) Proposed environmental quality standards for sheep dip chemicals in water. Chlorfenvinphos, Coumaphos, Diazinon, Fenchlorphos, Flumethrin and Propetamphos. WRc plc, R & D Note 216. Scotland and Northern Ireland Forum for Environmental Research and the National Rivers AuthorityGoogle Scholar
  44. Lunestad BT, Samuelsen OB, Fjelde S, Ervik A (1995) Photostability of eight antibacterial agents in seawater. Aquaculture 134:217–225CrossRefGoogle Scholar
  45. Marengo JR, Kok RA, O’Brien K, Velagaleti R, Stamm JM (1997) Aerobic biodegradation of (14C)-sarafloxicin hydrochloride in soil. Environ Toxicol Chem 16:462–471CrossRefGoogle Scholar
  46. Novak SM, Portal J-M, Schiavon M (2001). Effects of soil type upon metolachlor losses in subsurface drainage. J Envion Qual 31:300–308Google Scholar
  47. Oka H, Ikai Y, Kawamura N, Yamada M, Harada K, Ito S, Suzuki M (1989) Photodecomposition products of tetracycline in aqueous solution. J Agric Food Chem 37:226–231CrossRefGoogle Scholar
  48. Pouliquen H, Le Bris H, Pinault L (1992) Experimental study of the therapeutic application of oxytetracycline, its attenuation in sediment and sea water, and implication for farm culture of benthic organisms. Mar Ecol Progr Ser 89:93–98CrossRefGoogle Scholar
  49. Sassman SA, Lee LS (2005) Sorption of three tetracyclines by several soils: assessing the role of pH and cation exchange. Environ Sci Technol 39:7452–7459CrossRefGoogle Scholar
  50. Samuelsen OB (1989) Degradation of oxytetracycline in seawater at two different temperatures and light intensities and the persistence of oxytetracycline in the sediment from a fish farm. Aquaculture 83:7–16CrossRefGoogle Scholar
  51. Samuelsen OB, Lunestad BT, Ervik A, Fjelde S (1994) Stability of antibacterial agents in an artificial marine aquaculture sediment studied under laboratory conditions. Aquaculture 126:283–290CrossRefGoogle Scholar
  52. Schlusener M, Von Arb MA, Bester K (2006) Elimination of macrolides, tiamulin and salinomycin during manure storage. Arch Environ Cont T 51:21–28CrossRefGoogle Scholar
  53. Schlusener MP, Bester K (2006) Persistence of antibiotics such as macrolides, tiamulin and salinomycin in soil. Environ Poll 143:565–571CrossRefGoogle Scholar
  54. Strock TJ, Sassman SA, Lee LS (2005) Sorption and related properties of the swine antibiotic carbadox and associated n-oxide reduced metabolites. Environ Sci Technol 39:3134–3142CrossRefGoogle Scholar
  55. Wehran A, Kasteel R, Simunek J, Groeneweg J, Vereecken H (2007) Transport of sulfadiazine in soil columns – experiments and modelling approaches. J Contam Hydrol 89:107–135CrossRefGoogle Scholar
  56. Ter Laak TL, Gebbink WA, Tolls J (2006a) Estimation of sorption coefficients of veterinary medicines from soil properties. Environ Toxicol Chem 25:933–941CrossRefGoogle Scholar
  57. Ter Laak TL, Gebbink WA, Tolls J (2006b) The effect of pH and ionic strength on the sorption of sulfachloropyridazine, tylosin and oxytetracycline to soil. Environ Toxicol Chem 25:904–911CrossRefGoogle Scholar
  58. Tolls J (2001) Sorption of veterinary pharmaceuticals – a review. Environ Sci Technol 35:3397–3406CrossRefGoogle Scholar
  59. Tomlin CDS (1997) The pesticide manual, 11th edn. BCPC, Bracknell, UKGoogle Scholar
  60. van Dijk J, Keukens HJ (2000) The stability of some veterinary drugs and coccidiostats during composting and storage of laying hen and broiler faeces. In: van Ginkel LA, Ruiter A (eds) Residues of veterinary drugs in food. Proceedings of the Euroresidue IV conference, Veldhoven, The Netherlands, 8–10 May, 2000Google Scholar
  61. WRc-NSF (2000) The development of a model for estimating the environmental concentrations (PECs) of veterinary medicines in soil following manure spreading (Project Code VM0295). Final Project Report to MAFFGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • A. B. A. Boxall
    • 1
  1. 1.Central Sciences LaboratorySand HuttonUnited Kingdom

Personalised recommendations