Skip to main content

Local Limit Theorems for the Giant Component of Random Hypergraphs

  • Conference paper
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX 2007, RANDOM 2007)

Abstract

Let H d (n,p) signify a random d-uniform hypergraph with n vertices in which each of the \({n}\choose{d}\) possible edges is present with probability p = p(n) independently, and let H d (n,m) denote a uniformly distributed d-uniform hypergraph with n vertices and m edges. We establish a local limit theorem for the number of vertices and edges in the largest component of H d (n,p) in the regime, thereby determining the joint distribution of these parameters precisely. As an application, we derive an asymptotic formula for the probability that H d (n,m) is connected, thus obtaining a formula for the asymptotic number of connected hypergraphs with a given number of vertices and edges. While most prior work on this subject relies on techniques from enumerative combinatorics, we present a new, purely probabilistic approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Andriamampianina, T., Ravelomanana, V.: Enumeration of connected uniform hypergraphs. In: Proceedings of FPSAC (2005)

    Google Scholar 

  2. Barraez, D., Boucheron, S., Fernandez de la Vega, W.: On the fluctuations of the giant component. Combinatorics, Probability and Computing 9, 287–304 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barbour, A.D., Karonski, M., Rucinski, A.: A central limit theorem for decomposable random variables with applications to random graphs. J. Combin. Theory Ser. B 47, 125–145 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  4. Behrisch, M., Coja-Oghlan, A., Kang, M.: The order of the giant component of random hypergraphs (preprint, 2007), available at http://arxiv.org/abs/0706.0496

  5. Behrisch, M., Coja-Oghlan, A., Kang, M.: Local limit theorems and the number of connected hypergraphs (preprint, 2007), available at http://arxiv.org/abs/0706.0497

  6. Bender, E.A., Canfield, E.R., McKay, B.D.: The asymptotic number of labeled connected graphs with a given number of vertices and edges. Random Structures and Algorithms 1, 127–169 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bender, E.A., Canfield, E.R., McKay, B.D.: Asymptotic properties of labeled connected graphs. Random Structures and Algorithms 3, 183–202 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bollobás, B.: Random graphs, 2nd edn. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  9. Coja-Oghlan, A., Moore, C., Sanwalani, V.: Counting connected graphs and hypergraphs via the probabilistic method. In: Random Structures and Algorithms (to appear)

    Google Scholar 

  10. Coppersmith, D., Gamarnik, D., Hajiaghayi, M., Sorkin, G.B.: Random MAX SAT, random MAX CUT, and their phase transitions. Random Structures and Algorithms 24, 502–545 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Erdös, P., Rënyi, A.: On random graphs I. Publicationes Mathematicae Debrecen 5, 290–297 (1959)

    MATH  Google Scholar 

  12. Erdős, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci. 5, 17–61 (1960)

    MathSciNet  MATH  Google Scholar 

  13. van der Hofstad, R., Spencer, J.: Counting connected graphs asymptotically. European Journal on Combinatorics 27, 1294–1320 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Janson, S.: The minimal spanning tree in a complete graph and a functional limit theorem for trees in a random graph. Random Structures and Algorithms 7, 337–355 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Janson, S., Łuczak, T., Ruciński, A.: Random Graphs. Wiley, Chichester (2000)

    Book  MATH  Google Scholar 

  16. Karoński, M., Łuczak, T.: The number of connected sparsely edged uniform hypergraphs. Discrete Math. 171, 153–168 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Karoński, M., Łuczak, T.: The phase transition in a random hypergraph. J. Comput. Appl. Math. 142, 125–135 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Łuczak, T.: On the number of sparse connected graphs. Random Structures and Algorithms 1, 171–173 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  19. Luczak, M., Łuczak, T.: The phase transition in the cluster-scaled model of a random graph. Random Structures and Algorithms 28, 215–246 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. O’Connell, N.: Some large deviation results for sparse random graphs. Prob. Th. Relat. Fields 110, 277–285 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. Pittel, B.: On tree census and the giant component in sparse random graphs. Random Structures and Algorithms 1, 311–342 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  22. Pittel, B., Wormald, N.C.: Asymptotic enumeration of sparse graphs with a minimum degree constraint. J. Combinatorial Theory, Series A 101, 249–263 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Pittel, B., Wormald, N.C.: Counting connected graphs inside out. J. Combin. Theory, Series B 93, 127–172 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ravelomanana, V., Rijamamy, A.L.: Creation and growth of components in a random hypergraph process. In: Chen, D.Z., Lee, D.T. (eds.) COCOON 2006. LNCS, vol. 4112, pp. 350–359. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  25. Schmidt-Pruzan, J., Shamir, E.: Component structure in the evolution of random hypergraphs. Combinatorica 5, 81–94 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  26. Stein, C.: A bound for the error in the normal approximation to the distribution of a sum of dependent variables. In: Proc. 6th Berkeley Symposium on Mathematical Statistics and Probability, pp. 583–602 (1970)

    Google Scholar 

  27. Stepanov, V.E.: On the probability of connectedness of a random graph g m (t). Theory Prob. Appl. 15, 55–67 (1970)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Behrisch, M., Coja-Oghlan, A., Kang, M. (2007). Local Limit Theorems for the Giant Component of Random Hypergraphs. In: Charikar, M., Jansen, K., Reingold, O., Rolim, J.D.P. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2007 2007. Lecture Notes in Computer Science, vol 4627. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74208-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74208-1_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74207-4

  • Online ISBN: 978-3-540-74208-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics