Skip to main content
Log in

Exponential Chebyshev Inequalities for Random Graphons and Their Applications

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

We prove some exponential Chebyshev inequality and derive the large deviation principle and the law of large numbers for the graphons constructed from a sequence of Erdős–Rényi random graphs with weights. Also, we obtain a new version of the large deviation principle for the number of triangles included in an Erdős–Rényi graph.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Erdős P. and Rényi A., “On the evolution of random graphs,” Publ. Math. Inst. Hungar. Acad. Sci., vol. 5, 17–61 (1960).

    MathSciNet  MATH  Google Scholar 

  2. Bollobás B.,Random Graphs, Cambridge Univ. Press, London (2001).

    Book  Google Scholar 

  3. Chatterjee S. and Varadhan S. R. S., “The large deviation principle for the Erdős–Rényi random graph,” European J. Combin., vol. 32, 1000–1017 (2011).

    Article  MathSciNet  Google Scholar 

  4. Chatterjee S.,Large Deviations for Random Graphs, Springer, Stanford (2017).

    Book  Google Scholar 

  5. Borovkov A. A. and Mogulskii A. A., “Chebyshev type exponential inequalities for sums of random vectors and random walk trajectories,” Theory Probab. Appl., vol. 56, no. 1, 21–43 (2012).

    Article  MathSciNet  Google Scholar 

  6. Borovkov A. A.,Asymptotic Analysis of Random Walks [Russian], Fizmatlit, Moscow (2013).

    MATH  Google Scholar 

  7. Borgs C., Chayes J. T., Lovász L., Sós V. T., and Vesztergombi K., “Convergent sequences of dense graphs. I: Subgraph frequencies, metric properties and testing,” Adv. Math., vol. 219, no. 6, 1801–1851 (2008).

    Article  MathSciNet  Google Scholar 

  8. Borgs C., Chayes J. T., Lovász L., Sós V. T., and Vesztergombi K., “Convergent sequences of dense graphs. II: Multiway cuts and statistical physics,” Ann. Math., vol. 176, no. 2, 151–219 (2012).

    Article  MathSciNet  Google Scholar 

  9. Bollobás B. and Riordan O., “Metrics for sparse graphs,” in: Surveys in Combinatorics 2009. Papers from the 22nd British combinatorial conference, St. Andrews, UK, July 5–10, 2009 (2009), 211–287.

  10. Dembo A. and Zeitouni O.,Large Deviations Techniques and Applications, Springer-Verlag, New York (1998).

    Book  Google Scholar 

  11. Wentzell A. D. and Freidlin M. I.,Fluctuations in Dynamical Systems Under the Action of Small Random Perturbations [Russian], Nauka, Moscow (1979).

    Google Scholar 

  12. Kolmogorov A. N. and Fomin S. V.,Elements of the Theory of Functions and Functional Analysis, Dover Publications, Mineola (2009).

    Google Scholar 

  13. Dyachenko M. I. and Ulyanov P. L.,Measure and Integral [Russian], Faktorial, Moscow (1998).

    Google Scholar 

  14. Heil C.,Introduction to Real Analysis, Springer-Verlag, New York (2019).

    Book  Google Scholar 

Download references

Funding

The authors were partially supported by the Russian Science Foundation (Grant 18–11–00129).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Logachov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Logachov, A.V., Mogulskii, A.A. Exponential Chebyshev Inequalities for Random Graphons and Their Applications. Sib Math J 61, 697–714 (2020). https://doi.org/10.1134/S0037446620040114

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446620040114

Keywords

UDC

Navigation