Skip to main content

Genomic and Evolutionary Perspectives on Sulfur Metabolism in Green Sulfur Bacteria

  • Conference paper
Microbial Sulfur Metabolism

Green sulfur bacteria (GSB) are anaerobic photoautotrophs that oxidize sulfide, elemental sulfur, thiosulfate, ferrous iron, and hydrogen for growth. We present here an analysis of the distribution and evolution of enzymes involved in oxidation of sulfur compounds in GSB based on genome sequence data from 12 strains. Sulfide:quinone reductase (SQR) is found in all strains. Chlorobium ferrooxidans, which cannot grow on sulfide but grows on Fe2+, has apparently lost all genes involved in oxidation of sulfur compounds other than sqr. Instead, this organism possesses genes involved in assimilatory sulfate reduction, a trait that is unusual in GSB. The dissimilatory sulfite reductase (Dsr) enzyme system, which appears to be involved in elemental sulfur utilization, is found in all sulfide-utilizing strains except Chloroherpeton thalassium. The absence of Dsr enzymes in this early diverging GSB, in combination with phylogenetic analyses, suggests that the Dsr system in GSB could be a recent acquisition, which was obtained by lateral gene transfer in part from sulfideoxidizing bacteria and in part from sulfate-reducing bacteria. All thiosulfate-utilizing GSB strains have an identical sox gene cluster. The soxCD genes, which are found in certain other thiosulfate-utilizing organisms like Paracoccus pantotrophus, are absent from GSB. Flavocytochrome c, adenosine 5ยด-phosphosulfate reductase, ATP-sulfurylase, the Qmo complex, and other enzymes related to the utilization of sulfur compounds are found in some, but not all sulfide-utilizing strains. Even though different GSB strains superficially exhibit a similar sulfur oxidation phenotype, this may be caused by different combinations of enzymes. Thus, genome analyses have revealed that GSB have greater diversity in sulfur metabolism than previously suspected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beatty JT, Overmann J, Lince MT, Manske AK, Lang AS, Blankenship RE, Van Dover CL, Martinson TA, Plumley FG (2005) An obligately photosynthetic bacterial anaerobe from a deep-sea hydrothermal vent. Proc Natl Acad Sci USA 102:9306โ€“9310.

    Articleย  CASย  PubMedย  Google Scholarย 

  • Brune DC (1989) Sulfur oxidation by phototrophic bacteria. Biochim Biophys Acta 975:189โ€“221.

    Articleย  CASย  PubMedย  Google Scholarย 

  • Brune DC (1995) Sulfur compounds as photosynthetic electron donors. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer, Dordrecht, pp 847โ€“870.

    Google Scholarย 

  • Dahl C (2008) Inorganic sulfur compounds as electron donors in purple sulfur bacteria. In: Govindjee (series ed) Advances in photosynthesis and respiration, vol 27, Hell R, Dahl C, Knaff DB, Leustek T (eds) Sulfur metabolism in phototrophic organisms. Springer, New York (in press).

    Google Scholarย 

  • Dahl C, Engels S, Pott-Sperling AS, Schulte A, Sander J, Lรผbbe Y, Deuster O, Brune DC (2005) Novel genes of the dsr gene cluster and evidence for close interaction of Dsr proteins during sulfur oxidation in the phototrophic sulfur bacterium Allochromatium vinosum. J Bacteriol 187:1392โ€“1404.

    Articleย  CASย  PubMedย  Google Scholarย 

  • Eisen JA, Nelson KE, Paulsen IT, Heidelberg JF, Wu M, Dodson RJ, Deboy R, Gwinn ML, Nelson WC, Haft DH, Hickey EK, Peterson JD, Durkin AS, Kolonay JL, Yang F, Holt I, Umayam LA, Mason T, Brenner M, Shea TP, Parksey D, Nierman WC, Feldblyum TV, Hansen CL, Craven MB, Radune D, Vamathevan J, Khouri H, White O, Gruber TM, Ketchum KA, Venter JC, Tettelin H, Bryant DA, Fraser CM (2002) The complete genome sequence of Chlorobium tepidum TLS, a photosynthetic, anaerobic, green-sulfur bacterium. Proc Natl Acad Sci USA 99:9509โ€“9514.

    Articleย  CASย  PubMedย  Google Scholarย 

  • Ehrenreich A, Widdel F (1994) Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism. Appl Environ Microbiol 60:4517โ€“4526.

    CASย  PubMedย  Google Scholarย 

  • Friedrich CG, Rother D, Bardischewsky F, Quentmeier A, Fischer J (2001) Oxidation of reduced inorganic sulfur compounds by bacteria: emergence of a common mechanism? Appl Environm Microbiol 67:2873โ€“2882.

    Articleย  CASย  Google Scholarย 

  • Friedrich CG, Bardischewsky F, Rother D, Quentmeier A, Fischer J (2005) Prokaryotic sulfur oxidation. Curr Opin Microbiol 8:253โ€“259.

    Articleย  CASย  PubMedย  Google Scholarย 

  • Frigaard N-U, Bryant DA (2004) Seeing green bacteria in a new light: genomics-enabled studies of the photosynthetic apparatus in green sulfur bacteria and filamentous anoxygenic phototrophic bacteria. Arch Microbiol 182: 265โ€“276.

    Articleย  CASย  PubMedย  Google Scholarย 

  • Frigaard N-U, Bryant DA (2006) Chlorosomes: Antenna organelles in photosynthetic green bacteria. In: Shively JM (ed) Complex intracellular structures in prokaryotes. Springer, Berlin, pp 79โ€“114.

    Chapterย  Google Scholarย 

  • Frigaard N-U, Bryant DA (2008) Genomics insights into the sulfur metabolism of phototrophic green sulfur bacteria. In: Govindjee (series ed) Advances in photosynthesis and respiration, vol 27, Hell R, Dahl C, Knaff D, Leustek T (eds) Sulfur metabolism in phototrophic organisms. Springer, New York (in press).

    Google Scholarย 

  • Frigaard N-U, Gomez Maqueo Chew A, Li H, Maresca JA, Bryant DA (2003) Chlorobium tepidum: Insights into the structure, physiology, and metabolism of a green sulfur bacterium derived from the complete genome sequence. Photosynth Res 78:93โ€“117.

    Articleย  CASย  PubMedย  Google Scholarย 

  • Frigaard N-U, Gomez Maqueo Chew A, Maresca JA, Bryant DA (2006) Bacteriochlorophyll biosynthesis in green bacteria. In: Grimm B, Porra R, Rรผdiger W, Scheer H (eds) Advances in photosynthesis and respiration, vol 25. Springer, Dordrecht, pp 201โ€“221.

    Google Scholarย 

  • Garrity GM, Holt JG (2001) Phylum BXI. Chlorobi phy. nov. In: Boone DR, Castenholz RW (eds) Bergeyโ€™s manual of systematic bacteriology, vol 1, 2nd edn. Springer, New York, pp 601โ€“623.

    Google Scholarย 

  • Gibson J, Pfennig N, Waterbury JB (1984) Chloroherpeton thalassium gen. nov. et spec. nov., a non-filamentous, flexing and gliding green sulfur bacterium. Arch Microbiol 138:96โ€“101.

    Articleย  CASย  PubMedย  Google Scholarย 

  • Griesbeck C, Hauska G, Schรผtz M (2000) Biological sulfide oxidation: Sulfide-quinone reductase (SQR), the primary reaction. In: Pandalai SG (ed) Recent research developments in microbiology, vol 4. Research Signpost, Trivadrum, pp 179โ€“203.

    Google Scholarย 

  • Griesbeck C, Schรผtz M, Schรถdl T, Bathe S, Nausch L, Mederer N, Vielreicher M, Hauska G (2002) Mechanism of sulfide-quinone reductase investigated using site-directed mutagenesis and sulfur analysis. Biochemistry 41:11552โ€“11565.

    Articleย  CASย  PubMedย  Google Scholarย 

  • Hanson TE, Tabita FR (2001) A ribulose-1, 5-bisphosphate carboxylase/oxygenase (Rubisco)-like protein from Chlorobium tepidum that is involved with sulfur metabolism and the response to oxidative stress. Proc Natl Acad Sci USA 98:4397โ€“4402.

    Articleย  CASย  PubMedย  Google Scholarย 

  • Hanson TE, Tabita FR (2003) Insights into the stress response and sulfur metabolism revealed by proteome analysis of a Chlorobium tepidum mutant lacking the Rubisco-like protein. Photosynth Res 78:231โ€“248.

    Articleย  CASย  PubMedย  Google Scholarย 

  • Heising S, Richter L, Ludwig W, Schink B (1999) Chlorobium ferrooxidans sp. nov., a phototrophic green sulfur bacterium that oxidizes ferrous iron in coculture with a โ€œGeospirillumโ€ sp. strain. Arch Microbiol 172:116โ€“124.

    Articleย  CASย  PubMedย  Google Scholarย 

  • Imhoff JF (2003) Phylogenetic taxonomy of the family Chlorobiaceae on the basis of 16S rRNA and fmo (Fenna-Matthews-Olson protein) gene sequences. Intl J Syst Evol Microbiol 53:941โ€“951.

    Articleย  CASย  Google Scholarย 

  • Imhoff JF, Hiraishi A, Sรผling J (2005) Anoxygenic phototrophic purple bacteria. In: Brenner DJ, Krieg NR, Staley JT (eds) Bergeyโ€™s manual of systematic bacteriology, vol 2, part A, 2nd edn. Springer, New York, pp 119โ€“132.

    Google Scholarย 

  • Joint Genome Institute (2007a) Integrated microbial genomes. http://img.jgi.doe.gov. Cited 15 Jan 2007.

  • Joint Genome Institute (2007b) Microbial genomics. http://genome.jgi-psf.org/mic_cur1.html. Cited 15 Jan 2007.

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinformatics 5:150โ€“163.

    Articleย  CASย  PubMedย  Google Scholarย 

  • Lippert KD, Pfennig N (1969) Die Verwertung von molekularem Wasserstoff durch Chlorobium thiosulfatophilum. Arch Microbiol 65:29โ€“47.

    CASย  Google Scholarย 

  • Manske AK, Glaeser J, Kuypers MAM, Overmann J (2005) Physiology and phylogeny of green sulfur bacteria forming a monospecific phototrophic assemblage at a depth of 100 meters in the Black Sea. Appl Environ Microbiol 71:8049โ€“8060.

    Articleย  CASย  PubMedย  Google Scholarย 

  • Mรฉndez-Alvarez S, Pavรณn V, Esteve I, Guerrero R, Gaju N (1994) Transformation of Chlorobium limicola by a plasmid that confers the ability to utilize thiosulfate. J Bacteriol 176:7395โ€“7397.

    PubMedย  Google Scholarย 

  • National Center for Biotechnology Information (2007) Genomic biology. http://www.ncbi.nlm.nih.gov/Genomes. Cited 15 Jan 2007.

  • Overmann J (2000) The family Chlorobiaceae. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes: an evolving electronic resource for the microbiological community, 3rd edn, release 3.1. Springer, New York.

    Google Scholarย 

  • Overmann J, Cypionka H, Pfennig N (1992) An extremely low-light-adapted phototrophic sulfur bacterium from the Black Sea. Limnol Oceanogr 37:150โ€“155.

    Articleย  CASย  Google Scholarย 

  • Pires RH, Lourenรงo AI, Morais F, Teixeira M, Xavier AV, Saraiva LM, Pereira IAC (2003) A novel membrane-bound respiratory complex from Desulfovibrio desulfuricans ATCC 27774. Biochim Biophys Acta 1605:67โ€“82.

    Articleย  CASย  PubMedย  Google Scholarย 

  • Pott AS, Dahl C (1998) Sirohaem sulfite reductase and other proteins encoded by genes at the dsr locus of Chromatium vinosum are involved in the oxidation of intracellular sulfur. Microbiology 144:1881โ€“1894.

    Articleย  CASย  PubMedย  Google Scholarย 

  • Quentmeier A, Friedrich CG (2001) The cysteine residue of the SoxY protein as the active site of protein-bound sulfur oxidation of Paracoccus pantotrophus GB17. FEBS Lett 503:168โ€“172.

    Articleย  CASย  PubMedย  Google Scholarย 

  • Reinartz M, Tschรคpe J, Brรผser T, Trรผper HG, Dahl C (1998) Sulfide oxidation in the phototrophic sulfur bacterium Chromatium vinosum. Arch Microbiol 170:59โ€“68.

    Articleย  CASย  PubMedย  Google Scholarย 

  • Sander J, Engels-Schwarzlose S, Dahl C (2006) Importance of the DsrMKJOP complex for sulfur oxidation in Allochromatium vinosum and phylogenetic analysis of related complexes in other prokaryotes. Arch Microbiol 186:357โ€“366.

    Articleย  CASย  PubMedย  Google Scholarย 

  • Shahak Y, Arieli B, Padan E, Hauska G (1992) Sulfide quinone reductase (SQR) activity in Chlorobium. FEBS Lett 299:127โ€“130.

    Articleย  CASย  PubMedย  Google Scholarย 

  • Theissen U, Hoffmeister M, Grieshaber M, Martin W (2003) Single eubacterial origin of eukaryotic sulfide:quinone oxidoreductase, a mitochondrial enzyme conserved from the early evolution of eukaryotes during anoxic and sulfidic times. Molec Biol Evol 20:1564โ€“1574.

    Articleย  CASย  PubMedย  Google Scholarย 

  • Trรผper HG, Lorenz C, Schedel M, Steinmetz M (1988) Metabolism of thiosulfate in Chlorobium. In: Olson JM, Ormerod JG, Amesz J, Stackebrandt E, Trรผper HG (eds) Green photosynthetic bacteria. Plenum, New York, pp 189โ€“200.

    Google Scholarย 

  • van Gemerden H, Mas J (1995) Ecology of phototrophic sulfur bacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer, Dordrecht, pp 49โ€“85.

    Google Scholarย 

  • Vertรฉ F, Kostanjevecki V, De Smet L, Meyer TE, Cusanovich MA, Van Beeumen JJ (2002) Identification of a thiosulfate utilization gene cluster from the green phototrophic bacterium Chlorobium limicola. Biochemistry 41:2932โ€“2945.

    Articleย  PubMedย  CASย  Google Scholarย 

  • Vogl K, Glaeser J, Pfannes KR, Wanner G, Overmann J (2006) Chlorobium chlorochromatii sp. nov., a symbiotic green sulfur bacterium isolated from the phototrophic consortium โ€œChlorochromatium aggregatumโ€. Arch Microbiol 185:363โ€“372.

    Articleย  CASย  PubMedย  Google Scholarย 

  • Ward DM, Ferris MJ, Nold SC, Bateson MM (1998) A natural view of microbial biodiversity within hot spring cyanobacterial mat communities. Microbiol Mol Biol Rev 62:1353โ€“1370.

    CASย  PubMedย  Google Scholarย 

  • Widdel F, Schnell S, Heising S, Ehrenreich A, Assmus B, Schink B (1993) Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature 362:834โ€“836.

    Articleย  CASย  Google Scholarย 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

ยฉ 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Frigaard, NU., Bryant, D.A. (2008). Genomic and Evolutionary Perspectives on Sulfur Metabolism in Green Sulfur Bacteria. In: Dahl, C., Friedrich, C.G. (eds) Microbial Sulfur Metabolism. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72682-1_6

Download citation

Publish with us

Policies and ethics