Skip to main content

Plant Vaccines: An Immunological Perspective

  • Chapter
Plant-produced Microbial Vaccines

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 332))

  • 1519 Accesses

The advent of technologies to express heterologous proteins in planta has led to the proposition that plants may be engineered to be safe, inexpensive vehicles for the production of vaccines and possibly even vectors for their delivery. The immunogenicity of a variety of antigens of relevance to vaccination expressed in different plants has been assessed. The purpose of this article is to examine the utility of plant-expression systems in vaccine development from an immunological perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bodey B, Bodey B Jr, Siegel SE, Kaiser HE (2000) Genetically engineered monoclonal antibodies for direct anti-neoplastic treatment and cancer cell specific delivery of chemotherapeutic agents. Curr Pharm Des 6:261–276

    Article  PubMed  CAS  Google Scholar 

  • CDC (2002) General recommendations on immunization. Recommendations of the Advisory Committee on Immunization Practices (ACIP) and the American Academy of Family Physicians (AAFP). MMWR Mort Morbid Wkly Rep 51(RR02):1–36

    Google Scholar 

  • Choe NW, Estes MK, Langridge WH (2006) Synthesis of a ricin toxin B subunit-rotavirus VP7 fusion protein in potato. Mol Biotechnol 32:117–128

    Article  Google Scholar 

  • Choi NW, Esters MK, Langridge WH (2006) Ricin Toxin B subunit enhancement of rotavirus NSP4 immunogenicity in mice. Viral Immunol 19:54–63

    Article  PubMed  CAS  Google Scholar 

  • Cohen-Kaminsky S, Jambou F (2005) Prospects for a T-cell receptor vaccination against myasthe-nia gravis. Expert Rev Vaccines 4:473–492

    Article  PubMed  CAS  Google Scholar 

  • Cui Z, Qiu F (2006) Synthetic double-stranded RNA poly (I:C) as a potent peptide vaccine adjuvant: therapeutic activity against human cervical cancer in a rodent model. Cancer Immunol Immunother 55:1267–1279

    Article  PubMed  CAS  Google Scholar 

  • Diebold SS, Plank C, Cotton M, Wagner E, Zenke M (2002) Mannose receptor-mediated gene delivery into antigen presenting dendritic cells. Somat Cell Mol Genet 27:65–74

    Article  PubMed  CAS  Google Scholar 

  • Dredge K, Marriott JB, Todryk SM, Muller GW, Chen R, Stirling DI, Dalgleish AG (2002) Protective antitumor immunity induced by a costimulatory thalidomide analog in conjunction with whole tumor cell vaccination is mediated by increased Th1-type immunity. J Immunol 168:4914–4919

    PubMed  CAS  Google Scholar 

  • Faria AM, Weiner HL (2005) Oral tolerance. Immunol Rev 206:232–259

    Article  PubMed  CAS  Google Scholar 

  • Fujihashi K, Koga T, van Ginkel FW, Hagiware Y, McGhee JR (2002) A dilemma for mucosal vaccination: efficacy versus toxicity using enterotoxin-based adjuvants. Vaccine 20:2431–2438

    Article  PubMed  CAS  Google Scholar 

  • Gleba Y, Klimyuk V, Marillonnet S (2005) Magnification-a new platform for expressing recom-binant vaccines in plants. Vaccine 23:2042–2048

    Article  PubMed  CAS  Google Scholar 

  • Gustafson GL, Rhodes MJ (1992) Bacterial cell wall products as adjuvants: early interferon gamma as a marker for adjuvants that enhance protective immunity. Res Immunol 143:483–488

    Article  PubMed  CAS  Google Scholar 

  • Hanlon CA, DeMattos CA, DeMattos CC, Niezgoda M, Hooper DC, Koprowski H, Notkins A, Rupprecht CE (2001) Experimental utility of rabies virus-neutralizing human monoclonal antibodies in post-exposure prophylaxis. Vaccine 19:3834–3842

    Article  PubMed  CAS  Google Scholar 

  • Helm RM, Furuta GT, Stanley JS, Ye J, Cockrell G, Connaughton C, Simpson P, Bannon GA, Burks AW (2002) A neonatal swine model for peanut allergy. J Allergy Clin Immunol 109:136–142

    Article  PubMed  Google Scholar 

  • Jalava K, Eko FO, Riedmann E, Lubitz W (2003) Bacterial ghosts as carrier and targeting systems for mucosal antigen delivery. Expert Rev Vaccines 2:45–51

    Article  PubMed  CAS  Google Scholar 

  • Jenner E (1798) An inquiry into the causes and effects of the variolae vaccine. London: printed for the author by Sampson Law

    Google Scholar 

  • Keller MA, Stiehm ER (2000) Passive immunity in prevention and treatment of infectious diseases. Clin Microbiol Rev 13:602–614

    Article  PubMed  CAS  Google Scholar 

  • Ko K, Tekoah Y, Rudd PM, Harvey DJ, Dwek RA, Spitsin S, Hanlon CA, Rupprecht C, Dietzschold B, Golovkin M, Koprowski H (2003) Function and glycosylation of plant-derived antiviral monoclonal antibody. Proc Natl Acad Sci U S A 100:8013–8018

    Article  PubMed  CAS  Google Scholar 

  • Ko K, Steplewski Z, Glogowska M, Koprowski H (2005) Inhibition of tumor growth by plantderived mAb. Proc Natl Acad Sci U S A 102:7026–7030

    Article  PubMed  CAS  Google Scholar 

  • Krieg AM (2002) CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol 20:709–760

    Article  PubMed  CAS  Google Scholar 

  • Kumpel BM (2002) On the mechanism of tolerance to the Rh D antigen mediated by passive anti-D (Rh D prophylaxis). Immunol Lett 82:67–73

    Article  PubMed  CAS  Google Scholar 

  • Lenarczyk A, Le TT, Drane D, Malliaros J, Pearse M, Hamilton R, Cox J, Luft T, Gardner J, Suhrbier A (2004) ISCOM based vaccines for cancer immunotherapy. Vaccine 22:963–974

    Article  PubMed  CAS  Google Scholar 

  • Li ZG, Mu R, Dai ZP, Gao XM (2005) T cell vaccination in systemic lupus erythematosus with autologous activated T cells. Lupus 14:884–889

    Article  PubMed  CAS  Google Scholar 

  • Lyche N (2005) Targeted vaccine adjuvants based on modified cholera toxin. Curr Mol Med 5:591–597

    Article  Google Scholar 

  • Pasteur L (2002) Summary report of the experiments conducted at Pouilly-le-Fort Near Melun, on the anthrax vaccination. Classics of Biology and Medicine. Yale J Biol Med 75:59–62

    PubMed  Google Scholar 

  • Ramon G, Zoeller C (1927) L'anatoxine tétanique et l'immunisation active de l'homme vis-à-vis du tétanos. Ann Inst Pasteur 41:803–833

    Google Scholar 

  • Robinson JH, Delvig AA (2002) Diversity in MHC class II antigen presentation. Immunology 105:252–262

    Article  PubMed  CAS  Google Scholar 

  • Sawyer LA (2000) Antibodies for the prevention and treatment of viral diseases. Antiviral Res 47:57–77

    Article  PubMed  CAS  Google Scholar 

  • Schijns VE (2001) Induction and direction of immune responses by vaccine adjuvants. Crit Rev Immunol 21:75–85

    PubMed  CAS  Google Scholar 

  • Shi Y, Evans JE, Rock KL (2003) Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 425(6957):516–521

    Article  PubMed  CAS  Google Scholar 

  • Vandenbark AA, Morgan E, Bartholomew R, Bourdette D, Whitham R, Carlo D, Gold D, Hashim G, Offner H (2001) TCR peptide therapy in human autoimmune diseases. Neurochem Res 26:713–730

    Article  PubMed  CAS  Google Scholar 

  • Verch T, Yusibov V, Koprowski H (1998) Expression and assembly of a full-length monoclonal antibody in plants using a plant virus vector. J Immunol Methods 220:69–75

    Article  PubMed  CAS  Google Scholar 

  • Vichier-Guerre S, Lo-Man R, BenMohamed L, Deriaud E, Kovats S, Leclerc C, Bay S (2003) Induction of carbohydrate-specific antibodies in HLA-DR transgenic mice by a synthetic glycopeptide: a potential anticancer vaccine for human use. J Pept Res 62:117–124

    Article  PubMed  CAS  Google Scholar 

  • Weinstein PD, Cebra JJ (1991) The preference for switching to IgA expression by Peyer's patch germinal center B cells is likely due to the intrinsic influence of their microenvironment. J Immunol 147:4126–4135

    PubMed  CAS  Google Scholar 

  • Yusibov V, Hooper DC, Spitsin SV, Fleysh N, Kean RB, Mikheeva T, Deka D, Karasev A, Cox S, Randall J, Koprowski H (2002) Expression in plants and immunogenicity of plant virus-based experimental rabies vaccine. Vaccine 20:3155–3164

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hooper, D.C. (2009). Plant Vaccines: An Immunological Perspective. In: Karasev, A.V. (eds) Plant-produced Microbial Vaccines. Current Topics in Microbiology and Immunology, vol 332. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70868-1_1

Download citation

Publish with us

Policies and ethics