Skip to main content

Multigrid Software for Industrial Applications - From MG00 to SAMG

  • Chapter
100 Volumes of ‘Notes on Numerical Fluid Mechanics’

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 100))

Summary

In this article, we review the development of multigrid methods for partial differential equations over the last 30 years, illuminating, in particular, the software question. With respect to industrial software development, we will distinguish “optimal” multigrid, multigrid “acceleration” and “robust” multigrid. Surprisingly, not geometric multigrid but algebraic multigrid (AMG) finally brought the breakthrough. With the software package SAMG, which is based on block-type AMG, systems of partial differential equations can be treated efficiently also. Finally, we outline how SAMG is used for industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. UG. For software and papers, http://sit.iwr.uni-heidelberg.de/~ug/

  2. Benzi, M.: Preconditioning techniques for large linear systems: a survey. J. Comp. Physics 182, 418–477 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cao, H., Tchelepi, H.A., Wallis, J., Yardumian, H.: Parallel Scalable Unstructured CPR-Type Linear Solver for Reservoir Simulation. In: Procs. 2005 SPE ATCE, Dallas, TX, October 9–12 (2005)

    Google Scholar 

  4. Clees, T.: AMG Strategies for PDE Systems with Applications in Industrial Semiconductor Simulation. Fraunhofer Series Inf. Comm. Tech. 6/2005, Shaker, Aachen (October 2005); Dissertation, University of Cologne, Germany (November 2004)

    Google Scholar 

  5. Clees, T., Ganzer, L.: An efficient algebraic multi-grid solver strategy for adaptive implicit methods in oil reservoir simulation. In: Procs. 2007 SPE RSS, Houston, TX, Feb 26–28 (2007); Paper SPE 105789 (submitted to SPEJ)

    Google Scholar 

  6. Clees, T., Samrowski, T., Zitzmann, M., Weigel, R.: An automatic multi-level solver switching strategy for PEEC-based EMC simulation. In: Procs. 18th Int. Zurich Symposium on Electromagnetic Compatibility (EMC-Zurich), Munich 2007, September 24–28, pp. 25–28. IEEE, Los Alamitos (2007)

    Chapter  Google Scholar 

  7. Clees, T., Stüben, K.: Algebraic multigrid for industrial semiconductor device simulation. In: Bänsch, E. (ed.) Procs. Challenges in Scientific Computing (CISC), October 2–5, 2002. Lect. Notes Comp. Sci. Eng., vol. 35, pp. 110–130. Springer, Berlin (2002)

    Google Scholar 

  8. DHI-WASY. Using and testing the algebraic multigrid equation solver SAMG in FEFLOW. In: FEFLOW User’s Manual, White Papers, vol. III, http://www.wasy.de/english/produkte/feflow/doku.html

  9. Füllenbach, T., Stüben, K.: Algebraic multigrid for selected PDE systems. In: Elliptic and Parabolic Problems, Rolduc and Gaeta 2001. Procs. 4th Europ. Conf., pp. 399–410. World Scientific, London (2002)

    Chapter  Google Scholar 

  10. Füllenbach, T., Stüben, K., Mijalković, S.: Application of an algebraic multigrid solver to process simulation problems. In: Procs. IEEE Int. Conf. Sim. Semiconductor Proc. Dev. (SISPAD), Seattle (WA), USA, pp. 225–228 (2000)

    Google Scholar 

  11. Gee, M.W., Siefert, C.M., Hu, J.J., Tuminaro, R.S., Sala, M.G.: ML 5.0 smoothed aggregation user’s guide. Technical Report SAND2006-2649, Sandia National Laboratories (CA), USA (2006), http://trilinos.sandia.gov/packages/ml/

  12. Hackbusch, W.: Multigrid Methods and Applications. Springer, Berlin (1985)

    Google Scholar 

  13. Hackbusch, W., Trottenberg, U. (eds.): Multigrid Methods, Köln-Porz, Germany. Lect. Notes Math., vol. 960. Springer, Berlin (1982)

    MATH  Google Scholar 

  14. Jameson, A.: Multigrid algorithms for compressible flow calculations. In: Hackbusch, W., Trottenberg, U. (eds.) Multigrid II, Procs. 2nd Europ. Conf. Multigrid Methods, Cologne, Germany. Lect. Notes Math., vol. 1228, pp. 166–201. Springer, Berlin (1986)

    Chapter  Google Scholar 

  15. Klie, H., Wheeler, M.F., Clees, T., Stüben, K.: Deflation AMG solvers for highly ill-conditioned reservoir simulation problems. In: Procs, 2007 SPE RSS, Houston, TX, February 26–28 (2007); Paper SPE 105820 (submitted to SPEJ)

    Google Scholar 

  16. Krechel, A., Stüben, K.: SAMGp User’s Manual, Release 21z. Fraunhofer SCAI (October 2005), http://www.scai.fraunhofer.de/samg.html

  17. Larson, G., Synder, D., Abeele, D.V., Clees, T.: Application of single-level, pointwise algebraic, and smoothed aggregation multigrid methods to direct numerical simulations of incompressible turbulent flows. Comput. Visual. Sci. 11, 27–40 (2008)

    Article  Google Scholar 

  18. Meier Yang, U.: Parallel algebraic multigrid methods - high performance preconditioners. In: Bruaset, A.M., Tveito, A. (eds.) Numerical Solution of Partial Differential Equations on Parallel Computers, pp. 209–236. Springer, Heidelberg (2006), http://www.llnl.gov/CASC/hypre/

    Chapter  Google Scholar 

  19. Poole, G., Liu, Y.-C., Mandel, J.: Advancing analysis capabilities in ANSYS through solver technology. Electr. Trans. Numer. Anal. 15, 106–121 (2003)

    MathSciNet  MATH  Google Scholar 

  20. Raw, M.: A coupled algebraic multigrid method for the 3D Navier-Stokes equations. In: Fast Solvers for Flow Problems, Procs. 10th GAMM-Seminar, Vieweg, Braunschweig, Germany. Notes Num. Fluid Mechanics, vol. 49, pp. 204–215 (1995)

    Google Scholar 

  21. Ruge, J.: AMG for problems of elasticity. Appl. Math. Comp. 19, 293–309 (1986)

    Article  MATH  Google Scholar 

  22. Ruge, J., Stüben, K.: Algebraic Multigrid (AMG). In: McCormick, S.F. (ed.) Multigrid Methods. Frontiers in Applied Mathematics, vol. 3, pp. 73–130. SIAM, Philadelphia (1987)

    Google Scholar 

  23. Saad, Y., van der Vorst, H.: Iterative solution of linear systems in the 20th century. J. Comp. Appl. Math. 123, 1–33 (2000)

    Article  MATH  Google Scholar 

  24. Schröder, J., Trottenberg, U.: Reduktionsverfahren für Differenzengleichungen bei Randwertaufgaben I. Numer. Math. 22, 37–68 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  25. Schröder, J., Trottenberg, U., Reutersberg, H.: Reduktionsverfahren für Differenzengleichungen bei Randwertaufgaben I. Numer. Math. 26, 429–459 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  26. Schultz, M. (ed.): Elliptic Problem Solvers, Santa Fe (NM). Academic Press, New York (1981)

    MATH  Google Scholar 

  27. Solchenbach, K., Trottenberg, U.: On the multigrid acceleration approach in computational fluid dynamics. In: Dierstein, R., Müller-Wichards, D., Wacker, H.-M. (eds.) DFVLR-Seminar 1987. LNCS, vol. 295, pp. 145–158. Springer, Heidelberg (1988)

    Google Scholar 

  28. Stüben, K.: Solving Reservoir Simulation Equations. In: 9th SPE Int. Forum Reservoir Simulation December 9–13, Abu Dhabi (2007)

    Google Scholar 

  29. Stüben, K.: A review of algebraic multigrid. J. Comp. Appl. Math. 128, 281–309 (2001)

    Article  MATH  Google Scholar 

  30. Stüben, K.: An introduction to algebraic multigrid. In: [35], pp. 413–532

    Google Scholar 

  31. Stüben, K., Clees, T.: SAMG User’s Manual, Release 22c. Fraunhofer SCAI (May 2005), http://www.scai.fraunhofer.de/samg.html

  32. Stüben, K., Clees, T., Klie, H., Lou, B., Wheeler, M.F.: Algebraic multigrid methods (AMG) for the efficient solution of fully implicit formulations in reservoir simulation. In: Procs. 2007 SPE RSS, Houston, TX, February 26–28 (2007) Paper SPE 105832

    Google Scholar 

  33. Stüben, K., Delaney, P., Chmakov, S.: Algebraic Multigrid (AMG) for Ground Water Flow and Oil Reservoir Simulation. In: Procs. MODFLOW and More 2003. Colorado School of Mines, Golden (CO), USA, September 17–19 (2003)

    Google Scholar 

  34. Stüben, K., Trottenberg, U.: Multigrid methods: Fundamental algorithms, model problem analysis and applications. In: [13], pp. 1–176

    Google Scholar 

  35. Trottenberg, U., Oosterlee, C.W., Schüller, A.: Multigrid. Academic Press, London (2001) (appendices by K. Stüben, P. Oswald, and A. Brandt)

    MATH  Google Scholar 

  36. Vaněk, P., Mandel, J., Brezina, M.: Algebraic multigrid by smoothed aggregation for second and fourth order problems. Computing 56, 179–196 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  37. Weiss, J.M., Maruszewski, J.P., Smith, W.A.: Implicit solution of the Navier-Stokes equations on unstructured meshes. In: 13th AIAA CFD Conference. AIAA Paper 97-2103 (June 1997)

    Google Scholar 

  38. Yavneh, I.: Why multigrid methods are so efficient. Computing in Science and Engineering, Special issue on Multigrid Computing 8, 12–22 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Trottenberg, U., Clees, T. (2009). Multigrid Software for Industrial Applications - From MG00 to SAMG. In: Hirschel, E.H., Krause, E. (eds) 100 Volumes of ‘Notes on Numerical Fluid Mechanics’. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 100. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70805-6_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70805-6_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70804-9

  • Online ISBN: 978-3-540-70805-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics