Skip to main content

Abstract

Remote sensing can broadly be described as the detecting and measuring of electromagnetic energy emitted or reflected from distant objects. The measured electromagnetic energy which comes from different portions of the electromagnetic spectrum can be used to retrieve information on the properties of the earth surface. The purpose of this chapter is to present an overview of the current application of remote sensing to landslides detection (section 2), monitoring (section 3) and hazard analysis (section 4) and to illustrate how researchers around the world are currently using remote sensing techniques to map, monitor and manage landslides (section 5).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 249.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler RF, Huffman GJ, Bolvin DT, Curtis S, Nelkin EJ (2000) Tropical Rainfall Distributions Determined Using TRMM Combined with Other Satellite and Rain Gauge Information, Journal of Applied Meteorology, 39(12), 2007–2223.

    Article  Google Scholar 

  • Agliardi F, Crosta GB, Zanchi A (2001) Structural constraints on deep-seated slope deformation kinematics. Engineering Geology 59: 83–102.

    Article  Google Scholar 

  • Aleotti P, Chowdhury R (1999) Landslide hazard assessment: summary review and new perspectives, Bulletin of Engineering Geology and the Environment, 58(1), 21–44.

    Article  Google Scholar 

  • Anderson MG, Lloyd DM (1991) Using a combined slope hydrology/stability model to develop cut slope design charts. Proceedings of the Institution Civil Engineers, 91(2), 705–718.

    Google Scholar 

  • Angeli M, Pasuto A, Silvano S (2000) A critical review of landslide monitoring experiences. Engineering Geology 55, 133–147.

    Article  Google Scholar 

  • Ardizzone F, Cardinali M, Galli M, Guzzetti F, Reichenbach P. (2007) Identification and mapping of recent rainfall-induced landslides using elevation data collected by airborne Lidar. Natural Hazards and Earth System Sciences, 7, 637–650.

    Google Scholar 

  • Baecher GB, Christian T (2003) Reliability and statistics in geotechnical engineering. Wiley, Cornwall, UK, 605pp.

    Google Scholar 

  • Baeza C, Corominas J (1996) Assessment of shallow landslide susceptibility by means of statistical techniques. In: Proceedings of the Seventh International Symposium on Landslides, pp. 147–152.

    Google Scholar 

  • Berardino P, Costantini M, Franceschetti G, Iodice A, Petranera L, Rizzo V (2003) Use of differential SAR interferometry in monitoring and modelling large slope instability at Maratea (Basilicata, Italy). Engineering Geology, 68, 31–51.

    Article  Google Scholar 

  • Bernknopf RL, Campbell RH, Brookshire DS, Shapiro CD (1988) A probabilistic approach to landslide hazard mapping in Cincinnati, Ohio, with applications for economic evaluation. IAEG Bull 24(1), 39–56.

    Google Scholar 

  • Bianchi F, Catani F (2002) Landscape dynamics risk management in Northern Apennines (Italy). In: Brebbia CA, Zannetti P (eds.), Development and application of computer techniques to environmental studies, vol. 1. WIT, Southampton, UK, pp. 319–328.

    Google Scholar 

  • Boiano U, (1997) Anatomy of a siliciclastic turbidite basin: the Gorgoglione Flysch, Upper Miocene, southern Italy: Physical stratigraphy, sedimentology and sequenze-stratigraphic framework. Sedimentary Geology, 1007(3), 231–262.

    Google Scholar 

  • Bovenga F, Nutricato R, Refice A, Wasowski J (2006) Application of multi-temporal differential interferometry to slope instability detection in urban/peri-urban areas. Engineering Geology, 88(3–4), 218–239.

    Article  Google Scholar 

  • Buchroithner M (2002). Meteorological and earth observation remote sensing data for mass movement preparedness. Advances in Space Research, 29(1), 5–16.

    Article  Google Scholar 

  • Burton A, Arkell TJ, Bathurst JC (1998) Field variability of landslide model parameters. Environmental Geology 35(2–3), 100–114.

    Article  Google Scholar 

  • Caine N (1980), The rainfall intensity-duration control of shallow landslides and debris flows, Geografiska Annaler, 62A, 23–27.

    Article  Google Scholar 

  • Canuti P, Casagli N (1996) Considerazioni sulla valutazione del rischio di frana. Estratto da “Fenomeni franosi e centri abitati”, Atti del convegno di Bologna del 27 maggio 1994.

    Google Scholar 

  • Canuti P, Casagli N, Ermini L, Fanti R, Farina P (2004) Landslide activity as a geoindicator in Italy: significance and new perspectives from remote sensing , Environmental Geology, 45, 907–919.

    Article  Google Scholar 

  • Carrara A (1983) Multivariate methods for landslide hazard evaluation. Mathematical Geology 15(3), 403–426.

    Article  Google Scholar 

  • Carrara A, Cardinali M, Detti R, Guzzetti F, Pasqui V, Reichenbach P (1991) GIS techniques and statistical models in evaluating landslide hazard. Earth Surface Processes and Landforms, 16, 427–445.

    Article  Google Scholar 

  • Catani F, Casagli N, Ermini L, Righini G, Menduni G (2005), Landslide hazard and risk mapping at catchment scale in the Arno River basin, Landslide, 2(4), pp. 329–342, DOI: 10.1007/s10346-005-0021-0.

    Article  Google Scholar 

  • Casagli N, Fanti R, Nocentini M, Righini G (2005) Assessing the capabilities of VHR satellite data for debris flow mapping in the Machu Picchu area. In: K. Sassa, H. Fukuoka, F. Wang, G. Wang (eds.), Landslides, Risk analysis and Sustainable Disaster Management, Proceeding of the First General Assembly of the International Consortium on Landslides.

    Google Scholar 

  • Cheng K, Wei C, Chang S (2004) Locating landslides using multi- temporal satellite images. Advances in Space Research, 33, 296–301.

    Article  Google Scholar 

  • Chung CF, Fabbri AG, van Western CJ (1995) Multivariate regression analysis for landslide hazard zonation. In: Carrara A, Guzzetti F (eds.), Geographical information system in assessing natural hazards. Kluwer, Dordrecht, The Netherlands, pp. 107–142.

    Google Scholar 

  • Colesanti C, Ferretti A, Prati C, Rocca F (2003) Monitoring landslides and tectonic motions with the Permanent Scatterers Technique. Engineering Geology, 68(1), 3–14.

    Article  Google Scholar 

  • Colesanti C, Wasowski J, (2006) Investigating landslides with satellite Synthetic Aperture Radar (SAR) interferometry. Engineering Geology, 88(3–4), 173–199.

    Article  Google Scholar 

  • Colesanti F, Ferretti A, Prati C, Rocca F (2003) Monitoring landslides and tectonic motions with the Permanent Scatterers Techni- que. Engineering Geology, 68, 3–14.

    Article  Google Scholar 

  • Costantini M, Malvarosa F, Minati F, Pietranera L, Milillo G (2002). A three-dimensional phase unwrapping algorithm for processing of multitemporal SAR interferometric measurements. In: Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Toronto (Canada), vol. 3, pp. 1741–1743.

    Google Scholar 

  • Costantini M, Rosen PA (1999). A generalized phase unwrapping approach for sparse data. In: Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Hamburg (Germany) pp. 267–269.

    Google Scholar 

  • Crosta G (1998) Regionalization of rainfall thresholds: an aid to landslide hazard evaluation. Environmental Geology, 35: 131–145.

    Article  Google Scholar 

  • Crosta G, Frattini P (2001) Rainfall thresholds for triggering soil slips and debris flow. Proc. of the 3rd Plinius Conference 2001.

    Google Scholar 

  • Crosta GB, Agliardi F (2003) Failure forecast for large rock slides by surface displacement measurements. Canadian Geotechnical Journal, 40, 176–191.

    Article  Google Scholar 

  • Crosta GB, Dal Negro P (2003) Observations and modelling of soil slip-debris flow initiation processes in pyroclastic deposits: the Sarno 1998 event. Natural Hazards and Earth System Sciences, 3, 53–69.

    Google Scholar 

  • Crozier MJ (1986) Landslides: Causes, Consequences and Envirorment. Croom Helm, London, p. 252.

    Google Scholar 

  • Dai F, Lee C, Ngai Y (2002). Landslide risk assessment and management: An overview. Engineering Geology, 64, 65–87.

    Article  Google Scholar 

  • Delacourt C, Briole P, Achache J (1998) Tropospheric corrections of SAR interferograms with strong topography. Application to Etna, Geophysical Research Letters, 25(15), 2849–2852.

    Article  Google Scholar 

  • Delacourt C, Alleman P, Casson B, Vadon H (2004) Velocity field of the ’La Clapiere’ landslide measured by the correlation of aerial and QuickBird satellite images. Geophysical Research Letters, 31(15), 15619.

    Article  Google Scholar 

  • Ermini L, Catani F, Casagli N (2005) Artificial neural networks applied to landslide susceptibility assessment. Geomorphology, 66, 327–343.

    Article  Google Scholar 

  • Farina P, Colombo D, Fumagalli A, Marks F, Moretti S (2006) Permanent Scatterers for landslide investigations: outcomes from the ESA-SLAM project. Enginneering Geology, 88, 200–217.

    Article  Google Scholar 

  • Farina P, Casagli N, Ferretti A (2007) Radar-Interpretation of InSAR Measurements for Landslide Investigations in Civil Protection Practices. Proc. 1st North American Landslide Conference, Vail, Colorado, USA, 3–8 June 2007, pp. 272–283.

    Google Scholar 

  • Ferretti A, Prati C, Rocca F (2001) Permanent Scatterers in SAR Interferometry. IEEE Trans. Geoscience And Remote Sensing, 39(1), 8–20.

    Article  Google Scholar 

  • Ferretti A, Prati C, Rocca F, Wasowski J (2006) Satellite interferometry for monitoring ground deformations in the urban environment. Proc. 10th IAEG Congress, Nottingham, UK (CD-ROM).

    Google Scholar 

  • Fruneau B, Achache J, Delacourt C (1996). Observation and modelling of the Saint-Etienne-de-Tinee landslide using SAR interfer- ometry. Tectonophysics, 265, 181–190.

    Article  Google Scholar 

  • Gabriel AK, Goldstein RM, Zebker HA (1989) Mapping Small Elevation Changes over Large Areas: Differential Radar Interferometry. Journal Geophysics Research 94(B7), 9183–9191.

    Article  Google Scholar 

  • Galli M, Ardizzone F, Cardinali M, Guzzetti F, Reichenbach P (2008) Comparison of landslide inventory maps. Geomorphology, 94, 268–289.

    Article  Google Scholar 

  • Gili JA, Corominas J, Rius J (2000) Using Global Positioning System techniques in landslide monitoring. Engineering Geology 55, 95–113.

    Article  Google Scholar 

  • Galli M, Guzzetti F (2007) Vulnerability to landslides in Umbria, central Italy. Environmental Management, 40, 649–664.

    Article  Google Scholar 

  • Godt, JW, Baum RL, Chleborad AF (2006), Rainfall characteristics for shallow landsliding in Seattle, Washington, USA, Earth Surface Processes and Landforms, 31, pp. 97–110.

    Article  Google Scholar 

  • Gritzner ML, Marcus W, Aspinall R, Custer S (2001) Assessing landslide potential using GIS, soil wetness modeling and topographic attributes, Payette River, Idaho. Geomorphology, 37, 149–165.

    Article  Google Scholar 

  • Gupta R, Saha A (2001). Mapping debris flows in the Himalayas, natural resource management. GISdevelopment.net, p. 4.

    Google Scholar 

  • Guzzetti F, Galli M, Reichenbach P, Ardizzone F, Cardinali M (2006a) Landslide hazard assessment in the Collazzone area, Umbria, central Italy. Natural Hazards and Earth System Sciences, 6, 115–131.

    Google Scholar 

  • Guzzetti F, Peruccacci S, Rossi M, Stark CP (2007a) Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorology and Atmospheric Physics, 98, 239–267.

    Article  Google Scholar 

  • Guzzetti F, Peruccacci S, Rossi M, Stark CP (2008). The rainfall intensity-duration control of shallow landslides and debris flows: an update. Landslides, 5(1), 3–17.

    Article  Google Scholar 

  • Guzzetti F, Reichenbach P, Ardizzone, F, Cardinali M, Galli M, (2006b) Estimating the quality of landslide susceptibility models. Geomorphology, 81, 166–184.

    Article  Google Scholar 

  • Guzzetti F, Reichenbach P, Cardinali M, Galli M, Ardizzone F (2005) Probabilistic landslide hazard assessment at the basin scale. Geomorphology, 72, 272–299.

    Article  Google Scholar 

  • Guzzetti F, Manunta M, Ardizzone F, Pepe A, Cardinali M, Zeni G, Galli M, Lanari R, Reichenbach P (2007b) Analysis of ground deformation detected using the SBASS-DInSAR technique in Umbria, Central Italy. Submitted to: Pure and Applied Geophysics.

    Google Scholar 

  • Hervas J, Barredo J, Rosin P, Pasuto A, Mantovani F, Silvano S (2003). Monitoring landslides from optical remotely sensed imagery: The case story of Tessina landslide, Italy. Geomorphology, 54, 63–75.

    Article  Google Scholar 

  • Hong Y, Adler R, Huffman G (2006), Evaluation of the Potential of NASA Multi-satellite Precipitation Analysis in Global Landslide Hazard Assessment, Geophysical Research Letter, 33, L22402, doi:10.1029/2006GL028010.

    Google Scholar 

  • Hong Y, Adler R, Huffman G (2007a) Use of satellite remote sensing data in the mapping of global landslide susceptibility, Natural Hazards, 43(2).

    Google Scholar 

  • Hong Y, Adler R, Huffman G (2007b) Use of Satellite Remote Sensing Data in mapping of global shallow landslides Susceptibility, Journal of Natural Hazards, DOI: 10.1007/s11069-006-9104-z.

    Google Scholar 

  • Hong, Y, Adler R, Huffman G (2007c), An Experimental Global Monitoring System for Rainfall-triggered Landslides using Satellite Remote Sensing Information, IEEE TGRS, DOI: 10.1109/TGRS.2006.888436.

    Google Scholar 

  • Huffman GJ, Adler RF, Bolvin DT, Gu G, Nelkin EJ, Bowman KP, Hong Y, Stocker EF, Wolff DB (2007d) The TRMM Multi-satellite Precipitation Analysis: Quasi-Global, Multi-Year, Combined-Sensor Precipitation Estimates at Fine Scale.  Journal of Hydrometeor, 8(1), 38–55.

    Article  Google Scholar 

  • Huggel C, Kaab A, Haeberli W, Teysseire P, Paul F (2002) Remote sensing based assessment of hazards from glacier lake outbursts: A case study in the Swiss Alps. Canadian Geotechnical Journal, 39, 316–330.

    Article  Google Scholar 

  • IGOS GEOHAZARDS (2004) Geohazards Theme Report: For the monitoring of our Environment from Space and from Earth. European Space Agency publication, 55p.

    Google Scholar 

  • IUGS/WGL—International Union of Geological Sciences Working Group on Landslides (1995) A suggested method for describing the rate of movement of a landslide.IAEGBull. 52, 75–78 Hamburg, pp. 1993–1939.

    Google Scholar 

  • Iverson RM, Reid ME, Iverson NR, LaHusen RG, Logan M, Mann JE, Brien DL (2000) Acute sensitivity of landslide rates to initial soil porosity, Science, 290, 20.

    Article  Google Scholar 

  • Iverson RM (2000) Landslide triggering by rain infiltration. Water Resources Research, 36, 1897–1910.

    Article  Google Scholar 

  • Jade S, Sarkar S (1993) Statistical models for slope stability classication. Engineering Geology, 36, 91–98.

    Article  Google Scholar 

  • Kaab A (2000). Photogrammetry for early recognition of high mountain hazards: New techniques and applications. Physics and Chemistry of the Earth (B), 25(9), 765–770.

    Google Scholar 

  • Kaab A (2002) Monitoring high-mountain terrain deformation from repeated air- and spaceborne optical data: examples using digital aerial imagery and ASTER data ISPRS, Journal of Photogrammetry and Remote Sensing, 57(1-2), 39–52.

    Article  Google Scholar 

  • Kaab A, Wessels R, Haeberli W, Huggel C, Kargel J, Khalsa S (2003). Rapid ASTER Imaging facilities timely hazard assessment of glacier hazards and disasters. EOS. Transactions American Geophysical Union, 84(13), 117–124.

    Google Scholar 

  • Keefer DK, Wilson RC (1987) Real-time landslide warning during heavy rainfall: Science, 238(13), 921–925.

    Article  Google Scholar 

  • Kimura H, Yamaguchi Y (2000) Detection of landslide areas using radar interferometry. Photogrammetric Engineering Remote Sensing 66(3), 337–344.

    Google Scholar 

  • Kirschbaum D, Hill S, Adler R, Hong Y (2008) Global landslide inventory database for hazard applications, Landslide (submitted).

    Google Scholar 

  • Kniveton, D, de Graff P, Granicas K, Hardy R (2000). The development of a remote sensing based technique to predict debris flow triggering conditions in the French Alps. International Journal of Remote Sensing, 21(3), 419–434.

    Article  Google Scholar 

  • Larsen, MC, Simon A (1993) A rainfall intensity-duration threshold for landslides in a humid-tropical environment, Puerto Rico, Geografiska Annaler, 75, 13–23.

    Article  Google Scholar 

  • Lee S (2005) Application of logistic regression model and its validation for landslide susceptibility mapping using GIS and remote sensing data, International Journal of Remote Sensing, 26(7), 1477–1491.

    Article  Google Scholar 

  • Lee S, Choi J, Min K (2004) Probabilistic Landslide Hazard Mapping using GIS and Remote Sensing Data at Boeun, Korea. International Journal of Remote Sensing, 25, 2037–2052.

    Article  Google Scholar 

  • Lee S, Choi J (2004) Application of a weight-of-evidence model to landslide susceptibility analysis, International Journal of Geographic Information Science, 18, 789–814.

    Article  Google Scholar 

  • Lee S, Ryu J, Lee M, Won J (2003) Landslide susceptibility analysis using artificial neural network at Boeun, Korea. Environmental Geology, 44, 820–833.

    Article  Google Scholar 

  • Lin S, Lin, J, Hung YHC, Yang, MD (2002) Assessing debris flow hazard in a watershed in Taiwan. Engineering Geology, 66, 295–313.

    Article  Google Scholar 

  • Liu JG, Mason PJ, Clerici N, Chen S, Davis AM, Miao F, Deng H, Lieng L (2003) Landslide Hazard Assessment in the Three Gorges Area of the Yangtze River using ASTER Imagery. Proceedings of IGARSS 2003 July 21–25, 2003.

    Google Scholar 

  • Lu P, Rosenbaum MS (2003) Articial neural networks and grey systems for the prediction of slope stability. Nat Hazards, 30(3), 383–398.

    Article  Google Scholar 

  • Mantovani F, Soeters R, Van Westen CJ (1996) Remote sensing techniques for landslide studies and hazard zonation in Europe, Geomorphology, 15(3–4), 213–225.

    Google Scholar 

  • Massonnet D, Rossi M, Carmona C, Adragna F, Peltzer G, Feigl K, Rabaute T (1993) The displacement field of the Landers earth- quake mapped by radar interferometry. Nature, 364, 138–142.

    Article  Google Scholar 

  • Massonnet D, Briole P, Arnaud A (1995) Deflation of Mount Etna monitored by space radar interferometry. Nature, 375, 567–570.

    Article  Google Scholar 

  • Massonnet D, Feigl KL (1998) Radar interferometry and its application to changes in the earth's surface. Review Geophysics, 36(4), 441–500.

    Article  Google Scholar 

  • Metternicht G, Hurni L, Gogu R (2005) Remote sensing of landslides: An analysis of the potential contribution to geo-spatial systems for hazard assessment in mountainous environments. Remote Sensing of Environment 98(2005), 284–303.

    Google Scholar 

  • Montgomery DR, Dietrich WE (1994) A physically based model for the topographic control on shallow landsliding. Water resources research, 30(4), 1153–1171.

    Article  Google Scholar 

  • Moretti S, Righini G (2004) Dati ottici satellitari ad alta risoluzione per l’inventario dei movimenti di versante. Atti della 8° Conferenza Nazionale ASITA, Roma, 14–17 Dicembre 2004.

    Google Scholar 

  • Nagarajan R, Mukherjee A, Roy A, Khire M (1998) Temporal remote sensing data and GIS application in landslide hazard zonation of part of Western Ghat, India. International Journal of Remote Sensing, 19(4), 573–585.

    Article  Google Scholar 

  • Nichol J, Wong MS (2008) Satellite remote sensing for detailed landslide inventories using change detection and image fusion. Internationa Journal of Remote Sensing, 26(6), 1913–1926.

    Google Scholar 

  • Noverraz F, Bonnard C, Dupraz H, Huguenin L (1998) Grands glissements de versants et climat – VERSINCLIM – Comportement passé, présent et futur des grands versants instables subactifs en fonction de l’évolution climatique, et évolution en continu des mouvements en profondeur. Rapport final PNR 31, vdf Hochschulverlag AG an der ETH Zürich, 314pp.

    Google Scholar 

  • Paganini M (2004). The use of space-borne sensors for the monitoring of slope instability: Present potentialities and future opportunities. In: J.R. Centre (ed.), Workshop on risk mitigation of slope instability. Ispra, Italy’ Institute for the Protection and Security of the Citizen.

    Google Scholar 

  • Prati C, Rocca F, Ferretti A (2004). Radar Interferometry using space- borne data: Potentials and operational capabilities. In J.R. Centre (ed.), Workshop on risk mitigation of slope instability. Ispra, Italy’ JRC- Institute for the Protection and Security of the Citizen.

    Google Scholar 

  • Refice A, Guerriero L, Bovenga F, Wasowski J, Atzori S, Ferrari R, Marsella M (2001) Detecting landslide activity by SAR interferometry. Proc ERS-ENVISAT Symposium, Goteborg.

    Google Scholar 

  • Rizzo V, Tesauro M (2000) SAR interferometry and field data of Randazzo landslide (Eastern Sicily, Italy). Phys Chem Earth (B), 25(9), 771–780.

    Google Scholar 

  • Rott H, Siegel A (1999) Analysis of mass movements in alpine terrain by means of SAR interferometry. Proceedings of IGARSS’99, Hamburg, pp. 1993–1939.

    Google Scholar 

  • Rott H, Mayer C, Siegel A (2000) On the operational potential of SAR interferometry for monitoring mass movements in alpine areas. Proceedings of EUSAR 2000, Munchen, Germany, pp. 43–46.

    Google Scholar 

  • Rott H (2004). Requirements and applications of satellite techniques for monitoring slope instability in Alpine areas. Workshop on risk mitigation of slope instability. Ispra, Italy’ JRC-Institute for the Protection and Security of the Citizen.

    Google Scholar 

  • Scanvic JY, Girault F (1989) Imagerie SPOT-1 et inventaire des mouvements de terrain: l’exemple de La Paz (Bolivie). Photointerpretation, 89-2(1), 1–20.

    Google Scholar 

  • Sidle RC, Ochiai H (2006), Landslide Processes, Prediction, and Land use, American Geophysical Union Press, Washington DC.

    Google Scholar 

  • Singhroy V (1995) Sar integrated techniques for geohazard assessment. Advances in Space Research, 15(11), 67–78.

    Article  Google Scholar 

  • Singhroy V (2002). Landslide hazards: CEOS, The use of earth observing satellites for hazard support: Assessments and scenarios. Final report of the CEOS Disaster Management Support Group, NOAA, p. 98.

    Google Scholar 

  • Singhroy V, Mattar K, Gray A (1998). Landslide characterisation in Canada using interferometric SAR and combined SAR and TM images. Advances in Space Research, 21(3), 465–476.

    Article  Google Scholar 

  • Soeters R, Van Westen CJ (1996) Slope instability, recognition, analysis and zonation, Landslides: Investigation and Mitigation. Special Report 247. Transportation.

    Google Scholar 

  • Strozzi T, Wegmuller U, Tosi L, Bitelli G, Spreckels V (2001) Land subsidence monitoring by differential SAR interferometry. Photogrammetric Engineering and Remote Sensing, 67, 1261.

    Google Scholar 

  • Terlien MTJ (1998) The determination of statistical and deterministic hydrological landslide-triggering thresholds. Environmental Geology, 35(2–3), 124–130.

    Article  Google Scholar 

  • Tofani V, Dapporto S , Vannocci P, Casagli N (2006) Infiltration, seepage and slope instability mechanisms during the 20–21 November 2000 rainstorm in Tuscany, central Italy, Natural Hazards and earth System Sciences, 6, 1025–1033.

    Article  Google Scholar 

  • van Westen C, Rengers N, Terlien M, Soeters R (1997). Prediction of the occurrence of slope instability phenomena through GIS-based hazard zonation. Geologische Rundschau, 86, 404–414.

    Article  Google Scholar 

  • Varnes, D (1984). Landslide hazard zonation: A review of principles and practice. Paris’ UNESCO, 63pp.

    Google Scholar 

  • Wasowski J, Ferretti A, Colesanti C (2007) Space-borne SAR interferometry for long term monitoring of slope instability hazards. Proceedings of 1st North American Landslide Conference, Vail, Colorado, USA, 3–8 June 2007, pp. 234–243.

    Google Scholar 

  • Werner CL, Wegmuller U, Wiesmann A, Strozzi T, (2003) Interferometric Point Target Analysis for Deformation Mapping. IGARSS Proceedings 2003, Toulouse.

    Google Scholar 

  • Wieczorek G (1983). Preparing a detailed landslide-inventory map for hazard evaluation and reduction. Bulletin of the Association of Engineering Geologists, 21(3), 337–342.

    Google Scholar 

  • Wieczorek GF (1987) Effect of rainfall intensity and duration on debris flows in central Santa Cruz Mountains, California. In: J.E. Costa, G.F. Wieczorek (eds.), Debris flows avalanches: processes, recognition and mitigation. Reviews in Engineering Geology, Gelogical Society of America, 7, 23–104.

    Google Scholar 

  • Wieczorek GF, Gori PL, Jager S, Kappel WM, Negussy D (1996) Assessment and management of landslide hazards near Tully Valley landslide, Syracuse, New York, USA. In: Proceedings of the VII International Symposium on Landslides, Trondheim, June 1996, vol. 1. Balkema, Rotterdam, The Netherlands, pp. 411–416.

    Google Scholar 

  • Wu W, Sidle RC (1995) A distributed slope stability model for steep forested basins. Water Resources Research, 31(8), 2097–2110.

    Article  Google Scholar 

  • Yamaguchi Y, Tanaka S, Odajima T, Kamai T, Tsuchida S (2008) Detection of a landslide movement as geometric misregistration in image matching of SPOT HRV data of two different dates. International Journal of Remote Sensing, 24(18), 3523–3534.

    Article  Google Scholar 

  • Zebker HA, Goldstein RM (1986) Topographic mapping from interferometer synthetic aperture radar observation. Journal of Geophysical Research, 91(B5), 4993–5000.

    Article  Google Scholar 

  • Zezza F, Merenda L, Bruno G, Crescenzi E, Iovine G (1994). Condizioni di instabilità franosa nei centri abitati dell'Appennino Dauno Pugliese. Geol. Appl. e Idrogeol., 29, 77–438.

    Google Scholar 

  • Zhou C, Lee C, Li, J, Xu Z (2002). On the spatial relationship between landslides and causative factors on Lantau Island, Hong Kong. Geomorphology, 43, 197–207.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Casagli, N., Tofani, V., Adler, R. (2009). A Look from Space. In: Sassa, K., Canuti, P. (eds) Landslides – Disaster Risk Reduction. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69970-5_18

Download citation

Publish with us

Policies and ethics