Skip to main content

Abstract

This contribution describes mathematical and algorithmic concepts that allow for a both numerically and hardware efficient implementation of a flow solver. In view of numerical efficiency, this strongly suggests multigrid solvers on adaptively refined grids in order to minimize the amount of data to be computed for a prescribed accuracy as well as the number of iterations. In view of hardware efficiency, a minimization of memory requirements and an optimization of data structures and data access tailored to the memory hierarchy of supercomputing architectures is essential, since flow solvers typically are data intensive applications. We address both the numerical and the hardware challenge with a combination of structured but flexible adaptive hierarchical Cartesian grids with space-filling curves as traversal scheme and stacks as data structures. These basic concepts are applied to the two computationally demanding application areas turbulent flow simulations and fluid-structure interactions. We show the benefits of our methods for these applications as well as first results achieved at the HLRB2 and smaller clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T.J. Barth, Computational fluid dynamics, structural analysis and mesh partitioning techniques—introduction, in VECPAR ’98: Selected Papers and Invited Talks from the Third International Conference on Vector and Parallel Processing (Springer, London, 1999), pp. 171–175

    Google Scholar 

  2. M. Brenk, H.-J. Bungartz, M. Mehl, I.L. Muntean, T. Neckel, T. Weinzierl, Numerical simulation of particle transport in a drift ratchet. SIAM J. Sci. Comput. (2007 in review)

    Google Scholar 

  3. M. Brenk, H.-J. Bungartz, M. Mehl, T. Neckel, Fluid-structure interaction on Cartesian grids: Flow simulation and coupling environment, in Fluid-Structure Interaction, ed. by H.-J. Bungartz, M. Schäfer. LNCSE, vol. 53 (Springer, Berlin, 2006), pp. 233–269

    Chapter  Google Scholar 

  4. H.-J. Bungartz, M. Mehl, T. Weinzierl, A parallel adaptive Cartesian PDE solver using space-filling curves, in Euro-Par 2006, Parallel Processing, 12th International Euro-Par Conference, ed. by E.W. Nagel, V.W. Walter, W. Lehner. LNCS, vol. 4128 (Springer, Berlin, 2006), pp. 1064–1074

    Chapter  Google Scholar 

  5. A.J. Chorin, Numerical solution of the Navier-Stokes equations. Math. Comput. 22, 745–762 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  6. K. Daubner, Geometrische Modellierung mittels Oktalbäumen und Visualisierung von Simulationsdaten aus der Strömungsmechanik. Studienarbeit, Universität Stuttgart, Universität Stuttgart, 2005

    Google Scholar 

  7. C.C. Douglas, J. Hu, M. Kowarschik, U. Rüde, C. Weiss, Cache optimization for structured and unstructured grid multigrid. Electron. T. Numer. Anal. 10, 21–40 (2000)

    MATH  Google Scholar 

  8. M. Emans, Ch. Zenger, An efficient method for the prediction of the motion of individual bubbles. Int. J. Comput. Fluid Dyn. 19, 347–356 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. P.M. Gresho, R.L. Sani, Incompressible Flow and the Finite Element Method (Wiley, New York, 1998)

    MATH  Google Scholar 

  10. F. Günther, Eine cache-optimale Implementierung der Finiten-Elemente-Methode. PhD thesis, Institut für Informatik, TU München, 2004

    Google Scholar 

  11. F. Günther, M. Mehl, M. Pögl, C. Zenger, A cache-aware algorithm for PDEs on hierarchical data structures based on space-filling curves. SIAM J. Sci. Comput. 28(5), 1634–1650 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. D. Hackenberg, R. Schöne, W.E. Nagel, S. Pflüger, Optimizing OpenMP parallelized DGEMM calls on SGI Altix 3700, in Euro-Par 2006, Parallel Processing, 12th International Euro-Par Conference, ed. by E.W. Nagel, V.W. Walter, W. Lehner. LNCS, vol. 4128 (Springer, Berlin, 2006), pp. 145–154

    Chapter  Google Scholar 

  13. F.H. Harlow, J.E. Welch, Numerical calculation of time-dependent viscous incompressible flow of fluid with a free surface. Phys. Fluids 8(12), 2182–2189 (1965)

    Article  Google Scholar 

  14. W. Herder, Lastverteilung und parallelisierte Erzeugung von Eingabedaten für ein paralleles cache-optimales Finite-Element-Verfahren. Diploma thesis, Institut für Informatik, TU München, 2005

    Google Scholar 

  15. D.E. Knuth, The genesis of attribute grammars, in WAGA: Proceedings of the International Conference on Attribute Grammars and Their Applications (Springer, New York, 1990), pp. 1–12

    Google Scholar 

  16. S. Matthias, F. Müller, Asymmetric pores in a silicon membrane acting as massively parallel Brownian ratchets. Lett. Nat. 424, 53–57 (2003)

    Article  Google Scholar 

  17. M. Mehl, T. Weinzierl, C. Zenger, A cache-oblivious self-adaptive full multigrid method. Numer. Linear Algebra 13(2–3), 275–291 (2006)

    Article  MathSciNet  Google Scholar 

  18. R.-P. Mundani, Hierarchische Geometriemodelle zur Einbettung verteilter Simulationsaufgaben, Berichte aus der Informatik (Shaker, Aachen, 2006) (PhD thesis)

    Google Scholar 

  19. T. Neckel, Einfache 2d-Fluid-Struktur-Wechselwirkungen mit einer cache-optimalen Finite-Element-Methode. Diploma thesis, Fakultät für Mathematik, TU München, 2005

    Google Scholar 

  20. M. Pögl, Entwicklung eines cache-optimalen 3D Finite-Element-Verfahrens für große Probleme. Fortschritt-Berichte VDI, Informatik Kommunikation 10, vol. 745 (VDI, Düsseldorf, 2004)

    Google Scholar 

  21. H. Sagan, Space-Filling Curves (Springer, New York, 1994)

    MATH  Google Scholar 

  22. M.F. Tomé, S. McKee, GENSMAC: A computational marker and cell method for free surface flows in general domains. J. Comput. Phys. 110, 171–186 (1994)

    Article  MATH  Google Scholar 

  23. S. Turek, M. Schäfer, Benchmark computations of laminar flow around a cylinder, in Flow Simulation with High-Performance Computers II, ed. by E.H. Hirschel. NNFM, vol. 52 (Vieweg, Wiesbaden, 1996)

    Google Scholar 

  24. W. Wang, Special bilinear quadrilateral elements for locally refined finite element grids. SIAM J. Sci. Comput. 22(6), 2029–2050 (2001)

    Article  MATH  Google Scholar 

  25. T. Weinzierl, Eine cache-optimale Implementierung eines Navier-Stokes Lösers unter besonderer Berücksichtigung physikalischer Erhaltungssätze. Diploma thesis, Institut für Informatik, TU München, 2005

    Google Scholar 

  26. G. Wellein, T. Zeiser, P. Lammers, Application performance of modern number crunchers. CSAR Focus 12, 17–19 (2004)

    Google Scholar 

  27. G. Zumbusch, Adaptive parallel multilevel methods for partial differential equations. Habilitationsschrift, Universität Bonn, 2001

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioan Lucian Muntean .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Muntean, I.L., Mehl, M., Neckel, T., Weinzierl, T. (2009). Concepts for Efficient Flow Solvers Based on Adaptive Cartesian Grids. In: Wagner, S., Steinmetz, M., Bode, A., Brehm, M. (eds) High Performance Computing in Science and Engineering, Garching/Munich 2007. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69182-2_42

Download citation

Publish with us

Policies and ethics