Skip to main content
  • 1445 Accesses

Abstract

Effects of extra strain and dilatation rates on the turbulence structure in nozzles with fully developed supersonic pipe flow as inflow condition are investigated by means of DNS and LES using high-order numerical schemes. It is found that weak favorable pressure gradients already strongly inhibit the Reynolds stresses via corresponding changes of production and pressure-strain terms. The results constitute a database for the improvement of turbulence models for compressible flows.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N.A. Adams, K. Shariff, A high-resolution hybrid compact-ENO scheme for shock-turbulence interaction problems. J. Comput. Phys. 127, 27–51 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  2. J.H. Bae, J.Y. Yoo, H. Choi, D.M. McEligot, Effects of large density variation on strongly heated internal air flows. Phys. Fluids 18 (2006)

    Google Scholar 

  3. P. Bradshaw, The effect of mean compression or dilatation on the turbulence structure of supersonic boundary layers. J. Fluid Mech. 63, 449–464 (1974)

    Article  Google Scholar 

  4. P. Bradshaw, Compressible turbulent shear layers. Annu. Rev. Fluid Mech. 9, 33–52 (1977)

    Article  Google Scholar 

  5. G.N. Coleman, J. Kim, R.D. Moser, A numerical study of turbulent supersonic isothermal-wall channel flow. J. Fluid Mech. 305, 159–183 (1995)

    Article  MATH  Google Scholar 

  6. H. Foysi, S. Sarkar, R. Friedrich, Compressibility effects and turbulence scalings in supersonic channel flow. J. Fluid Mech. 509, 207–216 (2004)

    Article  MATH  Google Scholar 

  7. S. Ghosh, J. Sesterhenn, R. Friedrich, DNS and LES of Compressible Turbulent Pipe Flow with Isothermal Wall. Direct and Large Eddy Simulation VI (Springer, Berlin, 2006)

    Google Scholar 

  8. P.G. Huang, G.N. Coleman, P. Bradshaw, Compressible turbulent channel flows: DNS results and modelling. J. Fluid Mech. 305, 185–218 (1995)

    Article  MATH  Google Scholar 

  9. S. Lele, Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103, 16–42 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  10. J. Mathew, R. Lechner, H. Foysi, J. Sesterhenn, R. Friedrich, An explicit filtering method for large eddy simulation of compressible flows. Phys. Fluids 15, 2279–2289 (2003)

    Article  Google Scholar 

  11. T.J. Poinsot, S.K. Lele, Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101, 104–129 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  12. J.U. Schlueter, S. Shankaran, S. Kim, H. Pitsch, J.J. Alonso, Integration of RANS and LES flow solvers: interface validation, in Annual Research Briefs (CTR, Stanford, 2002)

    Google Scholar 

  13. J. Sesterhenn, A characteristic-type formulation of the Navier-Stokes equations for high order upwind schemes. Comput. Fluids 30, 37–67 (2001)

    Article  MATH  Google Scholar 

  14. E.F. Spina, A.J. Smits, S.K. Robinson, The physics of supersonic turbulent boundary layers. Annu. Rev. Fluid Mech. 26, 287–319 (1994)

    Article  Google Scholar 

  15. S. Stolz, N.A. Adams, An approximate deconvolution procedure for large-eddy simulation. Phys. Fluids 11, 1699–1701 (1999)

    Article  Google Scholar 

  16. J.K. Williamson, Low-storage Runge-Kutta schemes. J. Comput. Phys. 35, 48–56 (1980)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somnath Ghosh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ghosh, S., Friedrich, R. (2009). On the Turbulence Structure in Supersonic Nozzle Flow. In: Wagner, S., Steinmetz, M., Bode, A., Brehm, M. (eds) High Performance Computing in Science and Engineering, Garching/Munich 2007. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69182-2_19

Download citation

Publish with us

Policies and ethics