Skip to main content

Magnetic Resonance Imaging

  • Chapter
Radiology of Osteoporosis

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

  • 1451 Accesses

Abstract

Although bone mineral density (BMD) is one of the most important contributing factors to bone strength and fracture risk, studies have shown that changes in bone quality and structure independent of BMD influence both bone strength and propensity to fracture. The influence of these other factors may partially explain the observed overlap in bone mineral measurements between patients with and patients without osteoporotic fractures. Thus, several new emerging techniques have been aimed at quantifying trabecular bone structure in addition to BMD. In recent years a number of studies have been performed that applied magnetic resonance imaging (MRI) to the study of trabecular bone and bone quality. Two MRI techniques have been most thoroughly studied in osteoporosis:

  • High-resolution MRI (HR-MRI)

  • T2* decay characteristics

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Benito M, Gomberg B, Wehrli FW, Weening RH, Zemel B, Wright AC, Song HK, Cucchiara A, Snyder PJ (2003) Deterioration of trabecular architecture in hypogonadal men. J Clin Endocrinol Metab 88:1497–1502

    Article  PubMed  CAS  Google Scholar 

  • Boehm H, Raeth C, Newitt D, Majumdar S, Link T (2003) Local 3D scaling properties — a new structure parameter for the analysis of trabecular bone in high resolution MRI: comparison with BMD in the prediction of biomechanical strength in vitro. Invest Radiol 38:269–280

    Article  PubMed  CAS  Google Scholar 

  • Chen WT, Shih TT, Chen RC, Lo SY, Chou CT, Lee JM, Tu HY (2001) Vertebral bone marrow perfusion evaluated with dynamic contrast-enhanced MR imaging: significance of aging and sex. Radiology 220:213–218

    PubMed  CAS  Google Scholar 

  • Davis CA, Genant HK, Dunham JS (1986) The effects of bone on proton NMR relaxation times of surrounding liquids. Invest Radiol 21:472–477

    Article  PubMed  CAS  Google Scholar 

  • Ford J, Wehrli F (1991) In vivo quantitative characterization of trabecular bone by NMR interferometry and localized proton spectroscopy. Magn Res Med 17:543–551

    Article  CAS  Google Scholar 

  • Ford J, Wehrli F, Chung H (1993) Magnetic field distribution in models of trabecular bone. Magn Res Med 30:373–379

    Article  CAS  Google Scholar 

  • Funke M, Bruhn H, Vosshenrich R, Rudolph O, Grabbe E (1994) Bestimmung der T2*-Relaxationszeit zur Charakterisierung des trabekulären Knochens. Fortschr Roentgenstr 161:58–63

    Article  CAS  Google Scholar 

  • Gomberg BR, Saha PK, Song HK, Hwang SN, Wehrli FW (2000) Topological analysis of trabecular bone MR images. IEEE Trans Med Imaging 19:166–174

    Article  PubMed  CAS  Google Scholar 

  • Gomberg BR, Saha PK, Song HK, Hwang SN, Wehrli FW (2001) Three-dimensional digital topological analysis of trabecular bone. Adv Exp Med Biol 496:57–65

    PubMed  CAS  Google Scholar 

  • Gomberg BR, Saha PK, Wehrli FW (2003) Topology-based orientation analysis of trabecular bone networks. Med Phys 30:158–168

    Article  PubMed  Google Scholar 

  • Gomberg BR, Wehrli FW, Vasilic B, Weening RH, Saha PK, Song HK, Wright AC (2004) Reproducibility and error sources of micro-MRI-based trabecular bone structural parameters of the distal radius and tibia. Bone 35:266–276

    Article  PubMed  CAS  Google Scholar 

  • Grampp S, Majumdar S, Jergas M, Newitt D, Lang P, Genant H (1996) Distal radius: in vivo assessment with quantitative MR imaging, peripheral quantitative CT and dual X-ray absorptiometry. Radiology 198:213–218

    PubMed  CAS  Google Scholar 

  • Hipp J, Jansujwicz A, Simmons C, Snyder B (1996) Trabecular Bone Morphology from Micro-Magnetic Resonance Imaging. J Bone Miner Res 11:286–292

    Article  PubMed  CAS  Google Scholar 

  • Krug R, Banerjee S, Han ET, Newitt DC, Link TM, Majumdar S (2005) Feasibility of in vivo structural analysis of highresolution magnetic resonance images of the proximal femur. Osteoporos Int 16:1307–1314

    Article  PubMed  Google Scholar 

  • Kuehn B, Stampa B, Heller M, Glueer C (1997) In vivo assessment of trabecular bone structure of the human phalanges using high resolution magnetic resonance imaging. Osteoporos Int 7:291

    Google Scholar 

  • Link TM, Majumdar S, Augat P, Lin J, Newitt D, Lu Y, Lane N, Genant H (1998a) In vivo high resolution MRI of the calcaneus: differences in trabecular structure in osteoporosis patients. J Bone Miner Res 13:1175–1182

    Article  PubMed  CAS  Google Scholar 

  • Link TM, Majumdar S, Augat P, Lin J, Newitt D, Lu Y, Lane N, Genant H (1998b) MRI T2* decay characteristics of the proximal femur for assessment of osteoporosis and fracture discrimination. Radiology 209:531–536

    PubMed  CAS  Google Scholar 

  • Link TM, Lotter A, Beyer F, Christiansen S, Newitt D, Lu Y, Schmid C, Majumdar S (2000) Post-cardiac transplantation changes in calcaneal trabecular bone structure: a magnetic resonance imaging study. Radiology 217:855–862

    PubMed  CAS  Google Scholar 

  • Link TM, Saborowski S, Kisters K, Kempkes M, Kosch M, Newitt D, Lu Y, Waldt S, Majumdar S (2002a) Changes in calcaneal trabecular bone structure assessed with high resolution MRI in patients with kidney transplantation. Osteoporos Int 13:119–129

    Article  PubMed  CAS  Google Scholar 

  • Link TM, Vieth V, Matheis J, Newitt D, Lu Y, Rummeny E, Majumdar S (2002b) Bone structure of the distal radius and the calcaneus versus BMD of the spine and proximal femur in the prediction of osteoporotic spine fractures. Eur Radiol 12:401–408

    Article  PubMed  Google Scholar 

  • Link TM, Ross C, Nägele E, Bauer J, Kuhn V, Eckstein F (2003a) Spinecho or gradient echo sequences for high resolution MRI of trabecular bone-which sequence performs better in the assessment of osteoporosis and the prediction of bone structure? RSNA. Scientific Meeting Program, p 572

    Google Scholar 

  • Link TM, Vieth V, Stehling C, Lotter A, Beer A, Newitt D, Majumdar S (2003b) High resolution MRI versus multislice spiral CT — which technique depicts the trabecular bone structure best? Eur Radiol 13:663–671

    PubMed  Google Scholar 

  • Majumdar S (1991) Quantitative study of the susceptibility difference between trabecular bone and bone marrow: computer simulations. Magn Reson Med 22:101–110

    Article  PubMed  CAS  Google Scholar 

  • Majumdar S, Newitt D, Jergas M, Gies A, Chiu E, Osman D, Keltner J, Keyak J, Genant H (1995) Evaluation of technical factors affecting the quantification of trabecular bone structure using magnetic resonance imaging. Bone 17:417–430

    Article  PubMed  CAS  Google Scholar 

  • Majumdar S, Newitt D, Mathur A, Osman D, Gies A, Chiu E, Lotz J, Kinney J, Genant H (1996) Magnetic resonance imaging of trabecular bone structure in the distal radius: relationship with X-ray tomographic microscopy and biomechanics. Osteoporos Int 6:376–385

    Article  PubMed  CAS  Google Scholar 

  • Majumdar S, Newitt D, Kothari M, Link T, Augat P, Lin J, Lang T, Genant H (1997) Measuring 3D trabecular structure and anisotropy using magnetic resonance. Osteoporos Int 7:272

    Google Scholar 

  • Majumdar S, Link T, Augat P, Lin J, Newitt D, Lane N, Genant H (1999) Trabecular bone architecture in the distal radius using MR imaging in subjects with fractures of the proximal femur. Osteoporos Int 10:231–239

    Article  PubMed  CAS  Google Scholar 

  • Mueller D, Link T, Bauer J, Morfill G, Rummeny E, Raeth C (2002) A newly developed 3D-based scaling index algorithm to optimize structure analysis of trabecular bone in patients with and without osteoporotic spine fractures. Radiology 225 (p):603

    Article  Google Scholar 

  • Newitt DC, van Rietbergen B, Majumdar S (2002) Processing and analysis of in vivo high-resolution MR images of trabecular bone for longitudinal studies: reproducibility of structural measures and micro-finite element analysis derived mechanical properties. Osteoporos Int 13:278–287

    Article  PubMed  CAS  Google Scholar 

  • Ouyang X, Selby K, Lang P, Majumdar S, Genant H (1997) High resolution MR imaging of the calcaneus: age-related changes in trabecular structure and comparison with DXA measurements. Calcif Tissue Int 60:139–147

    Article  PubMed  CAS  Google Scholar 

  • Phan C, Matsuura M, Bauer J, Dunn TC, Newitt D, Lochmuller EM, Eckstein F, Majumdar S, Link TM (2006) Trabecular bone structure of the calcaneus: comparison of high resolution MR imaging at 3.0 and 1.5 Tesla using microCT as a standard of reference. Radiology 239:488–496

    Article  PubMed  Google Scholar 

  • Pothuaud L, Newitt DC, Lu Y, MacDonald B, Majumdar S (2004) In vivo application of 3D-line skeleton graph analysis (LSGA) technique with high-resolution magnetic resonance imaging of trabecular bone structure. Osteoporos Int 15:411–419

    Article  PubMed  Google Scholar 

  • Shih TT, Chang CJ, Tseng WY, Hsiao JK, Shen LC, Liu TW, Yang PC (2004a) Effect of calcium channel blockers on vertebral bone marrow perfusion of the lumbar spine. Radiology 231:24–30

    Article  PubMed  Google Scholar 

  • Shih TT, Liu HC, Chang CJ, Wei SY, Shen LC, Yang PC (2004b) Correlation of MR lumbar spine bone marrow perfusion with bone mineral density in female subjects. Radiology 233:121–128

    Article  PubMed  Google Scholar 

  • van Rietbergen B, Majumdar S, Newitt D, MacDonald B (2002) High-resolution MRI and micro-FE for the evaluation of changes in bone mechanical properties during longitudinal clinical trials: application to calcaneal bone in postmenopausal women after one year of idoxifene treatment. Clin Biomech (Bristol, Avon) 17:81–88

    Article  Google Scholar 

  • Wehrli FW, Ford JC, Gusnard DA, Listerud J (1989) The inhomogeneity of magnetic susceptibility in vertebral body bone marrow. Proceedings of the 8th Annual Meeting SMRM I:217

    Google Scholar 

  • Wehrli F, Ford J, Attie M, Kressel H, Kaplan F (1991) Trabecular structure: preliminary application of MR interferometry. Radiology 179:615–621

    PubMed  CAS  Google Scholar 

  • Wehrli F, Ford J, Haddad J (1995) Osteoporosis: clinical assessment with quantitative MR imaging in diagnosis. Radiology 196:631–641

    PubMed  CAS  Google Scholar 

  • Wehrli F, Hwang S, Ma J, Song H, Ford J, Haddad J (1998) Cancellous bone volume and structure in the forearm: noninvasive assessment with MR microimaging and image processing. Radiology 206:347–357

    PubMed  CAS  Google Scholar 

  • Wehrli F, Gomberg B, Saha P, Song H, Hwang S, Snyder P (2001a) Digital topological analysis of in vivo magnetic resonance microimages of trabecular bone reveals structural implications of osteoporosis. J Bone Miner Res 16:1520–1531

    Article  PubMed  CAS  Google Scholar 

  • Wehrli FW, Gomberg BR, Saha PK, Song HK, Hwang SN, Snyder PJ (2001b) Digital topological analysis of in vivo magnetic resonance microimages of trabecular bone reveals structural implications of osteoporosis. J Bone Miner Res 16:1520–1531

    Article  PubMed  CAS  Google Scholar 

  • Wehrli FW, Saha PK, Gomberg BR, Song HK, Snyder PJ, Benito M, Wright A, Weening R (2002) Role of magnetic resonance for assessing structure and function of trabecular bone. Top Magn Reson Imaging 13:335–355

    Article  PubMed  Google Scholar 

  • Wehrli FW, Leonard MB, Saha PK, Gomberg BR (2004) Quantitative high-resolution magnetic resonance imaging reveals structural implications of renal osteodystrophy on trabecular and cortical bone. J Magn Reson Imaging 20:83–89

    Article  PubMed  Google Scholar 

  • Wu Z, Chung H, Wehrli F (1993) Sub voxel tissue classification in NMR microscopic images of trabecular bone. Proceedings of the SMRM, New York, p 451

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Link, T.M. (2008). Magnetic Resonance Imaging. In: Grampp, S. (eds) Radiology of Osteoporosis. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68604-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68604-0_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25888-9

  • Online ISBN: 978-3-540-68604-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics