Skip to main content

Near-Infrared Spectroscopy for Studying Higher Cognition

  • Chapter
Neural Correlates of Thinking

Part of the book series: On Thinking ((ONTHINKING,volume 1))

Abstract

Near-infrared spectroscopy (NIRS), which was originally designed for clinical monitoring of tissue oxygenation, has recently been receiving increasing attention as a useful tool for neuroimaging studies. This technique is completely noninvasive, does not require strict motion restriction, and can be used in a daily-life environment. It is expected that NIRS will provide a new direction for cognitive neuroscience research, more so than other neuroimaging techniques, although several problems with NIRS remain to be explored. This chapter describes the basic theory of NIRS, its potential and limitations, and the future prospects of this technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arridge SR (1999) Optical tomography in medical imaging. Inverse Probl 15:R41–R93

    Article  Google Scholar 

  • Baird A, Kagan J, Gaudette T et al (2002) Frontal lobe activation during object performance: data from near-infrared spectroscopy. Neuroimage 16:1120–1126

    Article  PubMed  Google Scholar 

  • Boas DA, Gaudette T, Strangman G et al (2001) The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics. Neuroimage 13:76–90

    Article  PubMed  CAS  Google Scholar 

  • Chance B, Leigh JS, Miyake H et al (1988) Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in brain. Proc Natl Acad Sci USA 85:4971–4975

    Article  PubMed  CAS  Google Scholar 

  • Choi J, Wolf M, Toronov V et al (2004) Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach. J Biomed Opt 9:221–229

    Article  PubMed  Google Scholar 

  • Delpy DT, Cope M, van der Zee P et al (1988) Estimation of optical pathlength through tissue from direct time of flight measurement. Phys Med Biol 33:1433–1442

    Article  PubMed  CAS  Google Scholar 

  • Fallgatter AJ, Roesler M, Sitzmann L et al (1997) Loss of functional hemispheric asymmetry in Alzheimer’s dementia assessed with near-infrared spectroscopy. Cogn Brain Res 6:67–72

    Article  CAS  Google Scholar 

  • Firbank M, Okada E, Delpy DT (1998) A theoretical study of the signal contribution of regions of the adult head to near-infrared spectroscopy studies of visual evoked responses. Neuroimage 8:69–78

    Article  PubMed  CAS  Google Scholar 

  • Fox P, Raichle ME (1986) Focal Physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc Natl Acad Sci USA 83:1140–1144

    Article  PubMed  CAS  Google Scholar 

  • Franceschini MA, Boas DA (2004) Noninvasive measurement of neuronal activity with nearinfrared optical imaging. Neuroimage 21:372–386

    Article  PubMed  Google Scholar 

  • Fukui Y, Ajichi Y, Okada E (2003) Monte Carlo prediction of near-infrared light propagation in realistic adult and neonatal head models. Appl Opt 42:2881–2887

    Article  PubMed  Google Scholar 

  • Gao H, Zhao H, Yamada Y (2002) Improvement of image quality in diffuse optical tomography using Ml time-resolved data. Appl Opt 41:778–791

    Article  PubMed  Google Scholar 

  • Hielscher AH, Liu H, Chance B et al (1996) Time-resolved photon emission from layered turbid media. Appl Opt 35:719–728

    Article  Google Scholar 

  • Hoshi Y, Chen S-J (2006) New dimension of cognitive neuroscience research with near-infrared spectroscopy: free-motion neuroimaging studies In: Chen FJ (ed) Progress in brain mapping research, 1st edn. Nova Science, New York

    Google Scholar 

  • Hoshi Y, Tamura M (1993) Detection of dynamic changes in cerebral oxygenation coupled to neuronal function during mental work in man. Neurosci Lett 150:5–8

    Article  PubMed  CAS  Google Scholar 

  • Hoshi Y, Tamura M (1997a) Near-infrared optical detection of sequential brain activation in the prefrontal cortex during mental tasks. Neuroimage 5:292–297

    Article  PubMed  CAS  Google Scholar 

  • Hoshi Y, Tamura M (1997b) Fluctuations in the cerebral oxygenation state during the resting period in functional mapping studies of the human brain. Med Biol Eng Comput 35:328–330

    Article  PubMed  CAS  Google Scholar 

  • Hoshi Y, Hazeki O, Kakihana Y et al (1997) Redox behavior of cytochrome oxidase in the rat brain measured by near-infrared spectroscopy. J Appl Physiol 83:1842–1848

    PubMed  CAS  Google Scholar 

  • Hoshi Y, Kobayashi N, Tamura M (2001) Interpretation of near-infrared spectroscopy signals: a study with a newly developed perfused rat brain model. J Appl Physiol 90:1657–1662

    PubMed  CAS  Google Scholar 

  • Hoshi Y, Tsou BH, Billock VA et al (2003) Spatiotemporal characteristics of hemodynamic changes in the human lateral prefrontal cortex during working memory tasks. Neuroimage 20:1493–1504

    Article  PubMed  Google Scholar 

  • Hoshi Y, Shimada M, Sato C et al (2005) Reevaluation of near-infrared light propagation in the adult human head: implications for functional near-infrared spectroscopy. J Biomed Opt 10:064032

    Article  PubMed  Google Scholar 

  • Jöbsis FF (1977) Noninvasive infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 198:1264–1267

    Article  PubMed  Google Scholar 

  • Kato T, Kamei A, Takashima S et al (1993) Human visual cortical function during photic stimulation monitoring by means of near-infrared spectroscopy. J Cereb Blood Flow Metab 13:516–520

    PubMed  CAS  Google Scholar 

  • Lakowicz JR, Berndt K (1990) Frequency domain measurement of photon migration in tissues. Chem Phys Lett 166:246–252

    Article  CAS  Google Scholar 

  • McCormick PW, Stewart M, Goetting MG et al (1991) Noninvasive cerebral optical spectroscopy for monitoring cerebral oxygen delivery and hemodynamics. Crit Care Med 19:89–97

    Article  PubMed  CAS  Google Scholar 

  • Meek JK, Firbank M, Elwell CE et al (1998) Regional hemodynamic response to visual stimulation in wake infants. Pediatr Res 43:840–843

    Article  PubMed  CAS  Google Scholar 

  • Miyai I, Tanabe HC, Sase I et al (2001) Cortical mapping of gait in humans: a near-infrared spectroscopic topography study. Neuroimage 14:1186–1192

    Article  PubMed  CAS  Google Scholar 

  • Mühlemann T, Haensse D, Wolf M (2006) Ein drahtloser Sensor für die bildgebende in-vivo Nahinfrarotspektroskopie. Paper presented at the 3-Ländertreffen der Deutschen, Österreichischen und Schweizerischen Gesellschaft für Biomedizinische Technik, Zurich

    Google Scholar 

  • Okada F, Tokumitsu Y, Hoshi Y et al (1994) Impaired interhemispheric integration in brain oxygenation and hemodynamics in schizophrenia. Eur Arch Psychiatry Clin Neurosci 244:17–25

    Article  PubMed  CAS  Google Scholar 

  • Okada M, Firbank M, Schweiger SR et al (1997) Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head. Appl Opt 36:21–31

    Article  PubMed  CAS  Google Scholar 

  • Patterson MS, Madsen SJ, Moulton JD et al (1991) Diffusion equation representation of photon migration in tissue. IEEE Microw Symp Dig 905–908

    Google Scholar 

  • Peňa M, Maki A, Kovačič D et al (2003) Sounds and silence: an optical topography study of language recognition at birth. Proc Natl Acad Sci USA 100:11702–11705

    Article  PubMed  CAS  Google Scholar 

  • Plichta MM, Heinzel S, Ehlis A-C et al (2007) Mode-based analysis of rapid event-related functional near-infrared spectroscopy (NIRS) data: a parametric validation study. Neuroimage 35:625–634

    Article  PubMed  CAS  Google Scholar 

  • Pogue BW, Patterson MS, Jiang H et al (1995) Initial assessment of a simple system for frequency domain diffuse optical tomography. Phys Med Biol 40:1709–1729

    Article  PubMed  CAS  Google Scholar 

  • Sato C, Shimada M, Hoshi Y et al (2005) Extraction of depth-dependent signals from time-resolved reflectance in layered turbid media. J Biomed Opt 10:064008

    Article  PubMed  Google Scholar 

  • Schroeter ML, Bücheier MM, Müller K et al (2004). Towards a standard analysis for functional near-infrared imaging. Neuroimage 21:283–290

    Article  PubMed  Google Scholar 

  • Shinba T, Nagano M, Karia N et al (2004) Near-infrared spectroscopy analysis of frontal lobe dysfunction in schizophrenia. Biol Psychiatry 55:154–164

    Article  PubMed  CAS  Google Scholar 

  • Sitaram R, Zhang H, Guan C et al (2007) Temporal classification of multi-channel near infrared spectroscopy signals of motor imagery for developing a brain-computer interface. Neuroimage 34:1416–1427

    Article  PubMed  Google Scholar 

  • Steinbrink J, Wabnitz H, Obrig H et al (2001) Determining changes in NIR absorption using a layered model of the human head. Phys Med Biol 46:879–896

    Article  PubMed  CAS  Google Scholar 

  • Strangman G, Franceschini MA, Boas DA (2003) Factors affecting the accuracy of near-infrared spectroscopy concentration calculation for focal changes in oxygenation parameters. Neuroimage 18:865–879

    Article  PubMed  Google Scholar 

  • Suto T, Fukuda M, Ito M et al (2004) Multichannel near-infrared spectroscopy in depression and schizophrenia: cognitive brain activation study. Biol Psychiatry 55:501–511

    Article  PubMed  Google Scholar 

  • Toronov MA, Franceschini M, Filiaci S et al (2000) Near-infrared study of fluctuations in cerebral hemodynamics during rest and motor stimulation: temporal analysis and spatial mapping. Med Phys 27:801–815

    Article  PubMed  CAS  Google Scholar 

  • Villringer A, Plank J, Hock C et al (1993) Near-infrared spectroscopy (NIRS): a new tool to study hemodynamic changes during activation of brain function in human adults. Neurosci Lett 154:101–104

    Article  PubMed  CAS  Google Scholar 

  • Wolf M, Wolf U, Choi JH et al (2002) Functional frequency-domain near-infrared spectroscopy detects fast neuronal signal in the motor cortex. Neuroimage 17:1868–1875

    Article  PubMed  Google Scholar 

  • Zaramella P, Freato F, Amigoni A et al (2001) Brain auditory activation measured by near-infrared spectroscopy (NIRS) in neonates. Pediatr Res 49:213–219

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoko Hoshi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hoshi, Y. (2009). Near-Infrared Spectroscopy for Studying Higher Cognition. In: Kraft, E., Gulyás, B., Pöppel, E. (eds) Neural Correlates of Thinking. On Thinking, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68044-4_6

Download citation

Publish with us

Policies and ethics