Skip to main content

Part of the book series: Lecture Notes in Physics Monographs ((LNPMGR,volume 41))

  • 1029 Accesses

Abstract

In this section, we shall discuss the Suzuki-Trotter formalism, to derive the classical analogue of a quantum mechanical model and apply it to the case of pure transverse Ising model. Elliott et al [3.1] numerically established, from series studies, the equivalence of the ground state singularities of a d-dimensional transverse Ising model to those of the (d + l)-dimensional classical Ising model. Later, Suzuki [3.2], [3.3], using a generalised version of Trotter formula [3.4], analytically established that the ground state of a d-dimensional quantal spin system is equivalent to a certain (d+1)-dimensional classical Ising model with many-body interactions: the exponents associated with the ground state phase transition of the quantum system are the same as the exponents of thermal phase transition in the equivalent (d + 1)-dimensional classical model, and for d > 3 the exponents of the quantum transition assume the mean field values of the exponents of the classical model. The interaction in the classical system is finite-ranged if the original quantum system has finite-range interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. J. Elliott, P. Pfeuty and C. Wood, Phys. Rev. Lett. 25 443 (1970).

    Article  ADS  Google Scholar 

  2. M. Suzuki, Prog. Theor. Phys. 46 1337 (1971).

    Article  MATH  ADS  Google Scholar 

  3. M. Suzuki, Prog. Theor. Phys. 56 2454 (1976), also see M. Suzuki in Quantum Monte Carlo Methods, Ed. M. Suzuki, Springer-Verlag, Heidelberg, p. 1 (1987).

    Google Scholar 

  4. H. F. Trotter, Proc. Am. Math. Soc. 10 545 (1959).

    Article  MATH  MathSciNet  Google Scholar 

  5. T. D. Schultz, D. C. Mattis and E. H. Lieb, Rev. Mod. Phys. 36 856 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  6. A. Wiesler, Phys. Lett. A 89 352 (1982).

    Article  ADS  Google Scholar 

  7. O. Nagai, Y. Yamada and Y. Miyatake in Quantum Monte Carlo Methods, Ed. M. Suzuki, Springer-Verlag, Heidelberg, p. 95 (1987).

    Google Scholar 

  8. K. Binder in The Application of Monte Carlo Methods in Statistical Physics, Ed. K. Binder, (Springer-Verlag, Heidelberg 1984); see also C. Rebbi, ibid p. 227.

    Google Scholar 

  9. R. M. Stratt, Phys. Rev. B 33 1921 (1986).

    Article  ADS  Google Scholar 

  10. P. Sen, Z. Phys. B 98 251 (1995).

    Article  ADS  Google Scholar 

  11. R. J. Elliott and C. Wood, J. Phys. C 4 2359 (1971).

    Article  ADS  Google Scholar 

  12. J. Oitmaa and M. Plischke, Physica B 86–88 577 (1977).

    Google Scholar 

  13. R. Jullien, P. Pfeuty, J. N. Fields and S. Doniach, Phys. Rev. B 18 3568 (1978).

    Article  ADS  Google Scholar 

  14. M. A. Continentino, Phys. Rep. 239 181 (1994).

    Article  ADS  Google Scholar 

  15. A. P. Young, J. Phys. C 8 L309 (1975); J. A. Hertz, Phys. Rev. B 14 1163 (1976).

    Article  ADS  Google Scholar 

  16. Z. Friedman, Phys. Rev. Lett. 36 1326 (1976); Phys. Rev. B 17 4653 (1978).

    Article  ADS  Google Scholar 

  17. K. A. Penson, R. Jullien and P. Pfeuty, Phys. Rev. B 19 4653 (1979).

    Article  ADS  Google Scholar 

  18. R. R. dos Santos, L. Sneddon, and R. B. Stinchcombe, J. Phys. A 14 3329 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  19. P. Pfeuty and R. J. Elliott, J. Phys. C 4 1816 (1977).

    Google Scholar 

  20. A. Yanase, J. Phys. Soc. Jap. 42 1816 (1977).

    Article  ADS  MathSciNet  Google Scholar 

  21. B. Mühlschlegel and H. Zittartz, Z. Phys. 175 553 (1963).

    Article  ADS  Google Scholar 

  22. R. B. Stinchcombe, J. Phys. C 6 2459 (1973).

    Article  ADS  Google Scholar 

  23. J. B. Kogut, Rev. Mod. Phys. 51 659 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  24. M. N. Barber and P. M. Duxbury, J. Stat. Phys. 29 427 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  25. T. Schultz, D. C. Mattis and E. H. Lieb, Rev. Mod. Phys. 36 854 (1964).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(1996). Transverse Ising System in Higher Dimensions (Pure Systems). In: Quantum Ising Phases and Transitions in Transverse Ising Models. Lecture Notes in Physics Monographs, vol 41. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-49865-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-49865-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61033-5

  • Online ISBN: 978-3-540-49865-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics