Skip to main content

Representing Paraconsistent Reasoning via Quantified Propositional Logic

  • Chapter
Inconsistency Tolerance

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3300))

Abstract

Quantified propositional logic is an extension of classical propositional logic where quantifications over atomic formulas are permitted. As such, quantified propositional logic is a fragment of second-order logic, and its sentences are usually referred to as quantified Boolean formulas (QBFs). The motivation to study quantified propositional logic for paraconsistent reasoning is based on two fundamental observations. Firstly, in recent years, practicably efficient solvers for quantified propositional logic have been presented. Secondly, complexity results imply that there is a wide range of paraconsistent reasoning problems which can be efficiently represented in terms of QBFs. Hence, solvers for QBFs can be used as a core engine in systems prototypically implementing several of such reasoning tasks, most of them lacking concrete realisations. To this end, we show how certain paraconsistent reasoning principles can be naturally formulated or reformulated by means of quantified Boolean formulas. More precisely, we describe polynomial-time constructible encodings providing axiomatisations of the given reasoning tasks. In this way, a whole variety of a priori distinct approaches to paraconsistent reasoning become comparable in a uniform setting.

The third and fourth author were partially supported by the Austrian Science Foundation (FWF) under grant P15068, as well as by the European Commission under project IST-2001-33570 INFOMIX and the IST-2001-33123 CologNeT Network of Excellence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arenas, M., Bertossi, L., Chomicki, J.: Consistent query answers in inconsistent databases. In: Proceedings of the Eighteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS 1999), pp. 68–79. ACM Press, New York (1999)

    Chapter  Google Scholar 

  2. Arieli, O.: Paraconsistent preferential reasoning by signed quantified Boolean formulae. In: Proceedings of the 16th European Conference on Artificial Intelligence, ECAI 2004 (2004) (to appear)

    Google Scholar 

  3. Arieli, O., Denecker, M.: Reducing preferential paraconsistent reasoning to classical entailment. Journal of Logic and Computation 13(4), 557–580 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arieli, O., Denecker, M., Nuffelen, B.V., Bruynooghe, M.: Database repair by signed formulae. In: Seipel, D., Turull-Torres, J.M.a. (eds.) FoIKS 2004. LNCS, vol. 2942, pp. 14–30. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Avron, A.: Simple consequence relations. Information and Computation 92, 105–139 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ayari, A., Basin, D.: QUBOS: Deciding quantified Boolean logic using propositional satisfiability solvers. In: Aagaard, M.D., O’Leary, J.W. (eds.) FMCAD 2002. LNCS, vol. 2517, pp. 187–201. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  7. Benferhat, S., Dubois, D., Prade, H.: Argumentative inference in uncertain and inconsistent knowledge bases. In: Proceedings of the Ninth Conference on Uncertainty in Artificial Intelligence (UAI 1993), pp. 411–419 (1993)

    Google Scholar 

  8. Benferhat, S., Dubois, D., Prade, H.: Some syntactic approaches to the handling of inconsistent knowledge bases: A comparative study. Part 1: The flat case. Studia Logica 58(1), 17–45 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Besnard, P.: An Introduction to Default Logic. Springer, Heidelberg (1989)

    Book  MATH  Google Scholar 

  10. Besnard, P., Schaub, T.: Circumscribing inconsistency. In: Proceedings of the 15th International Joint Conference on Artificial Intelligence (IJCAI 1997), pp. 150–155. Morgan Kaufmann Publishers, San Francisco (1997)

    Google Scholar 

  11. Besnard, P., Schaub, T.: Signed systems for paraconsistent reasoning. Journal of Automated Reasoning 20, 191–213 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Besnard, P., Schaub, T., Tompits, H., Woltran, S.: Paraconsistent reasoning via quantified Boolean formulas, I: Axiomatising signed systems. In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp. 320–331. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  13. Besnard, P., Schaub, T., Tompits, H., Woltran, S.: Paraconsistent reasoning via quantified Boolean formulas, II: Circumscribing inconsistent theories. In: Nielsen, T.D., Zhang, N.L. (eds.) ECSQARU 2003. LNCS (LNAI), vol. 2711, pp. 528–539. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  14. Brewka, G.: Preferred subtheories: An extended logical framework for default reasoning. In: Sridharan, N.S. (ed.) Proceedings of the Eleventh International Joint Conference on Artificial Intelligence (IJCAI 1989), pp. 1043–1048. Morgan Kaufmann Publishers, San Francisco (1989)

    Google Scholar 

  15. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Transactions on Computers C-35(8), 677–691 (1986)

    Article  MATH  Google Scholar 

  16. Bylander, T.: The computational complexity of propositional STRIPS planning. Artificial Intelligence 69(1–2), 165–204 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cadoli, M., Giovanardi, A., Schaerf, M.: An algorithm to evaluate quantified Boolean formulae. In: Proceedings of the 15th National Conference on Artificial Intelligence (AAAI 1998), pp. 262–267. AAAI Press/MIT Press (1998)

    Google Scholar 

  18. Cadoli, M., Schaerf, M.: On the complexity of entailment in propositional multivalued logics. Annals of Mathematics and Artificial Intelligence 18, 29–50 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Cayrol, C., Lagasquie-Schiex, M., Schiex, T.: Nonmonotonic reasoning: From complexity to algorithms. Annals of Mathematics and Artificial Intelligence 22(3– 4), 207–236 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Cayrol, C., Lagasquie-Schiex, M.-C.: Non-monotonic syntax-based entailment: A classification of consequence relations. In: Froidevaux, C., Kohlas, J. (eds.) ECSQARU 1995. LNCS, vol. 946, pp. 107–114. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  21. Church, A.: Introduction to Mathematical Logic, vol. I. Princeton University Press, Princeton (1956)

    MATH  Google Scholar 

  22. Coste-Marquis, S., Marquis, P.: Complexity results for paraconsistent inference relations. In: Fensel, D., Giunchiglia, F., McGuiness, D., Williams, M. (eds.) Proceedings of the Eighth International Conference on Principles of Knowledge Representation and Reasoning (KR 2002), pp. 61–72. Morgan Kaufmann Publishers, San Francisco (2002)

    Google Scholar 

  23. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving. Communications of the ACM 5(7), 394–397 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  24. Davis, M., Putman, H.: A computing procedure for quantification theory. Journal of the ACM 7(3), 201–215 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  25. Delgrande, J., Schaub, T., Tompits, H., Woltran, S.: On computing solutions to belief change scenarios. In: Benferhat, S., Besnard, P. (eds.) ECSQARU 2001. LNCS (LNAI), vol. 2143, pp. 510–521. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  26. D’Ottaviano, I., da Costa, N.: Sur un problème de Jaśkowski. Comptes Rendus de l’Académie des Sciences de Paris 270, 1349–1353 (1970)

    MATH  Google Scholar 

  27. Egly, U., Eiter, T., Tompits, H., Woltran, S.: Solving advanced reasoning tasks using quantified Boolean formulas. In: Proceedings of the 17th National Conference on Artificial Intelligence (AAAI 2000), pp. 417–422. AAAI Press/MIT Press (2000)

    Google Scholar 

  28. Egly, U., Pichler, R., Woltran, S.: On deciding subsumption problems. In: Proceedings of the Fifth International Symposium on the Theory and Applications of Satisfiability Testing (SAT 2002), pp. 89–97 (2002)

    Google Scholar 

  29. Egly, U., Tompits, H., Woltran, S.: On quantifier shifting for quantified Boolean formulas. In: Proceedings of the SAT 2002 Workshop on Theory and Applications of Quantified Boolean Formulas (QBF 2002), pp. 48–61 (2002)

    Google Scholar 

  30. Eiter, T., Gottlob, G.: On the computational cost of disjunctive logic programming: Propositional case. Annals of Mathematics and Artificial Intelligence 15(3–4), 289–323 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  31. Eiter, T., Klotz, V., Tompits, H., Woltran, S.: Modal nonmonotonic logics revisited: Efficient encodings for the basic reasoning tasks. In: Egly, U., Fermüller, C. (eds.) TABLEAUX 2002. LNCS (LNAI), vol. 2381, pp. 100–114. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  32. Feldmann, R., Monien, B., Schamberger, S.: A distributed algorithm to evaluate quantified Boolean formulas. In: Proceedings of the 17th National Conference on Artificial Intelligence (AAAI 2000), pp. 285–290. AAAI Press/MIT Press (2000)

    Google Scholar 

  33. Frisch, A.: Inference without chaining. In: McDermott, J. (ed.) Proceedings of the Tenth International Joint Conference on Artificial Intelligence (IJCAI 1987), pp. 515–519. Morgan Kaufmann Publishers, San Francisco (1987)

    Google Scholar 

  34. Garey, M.R., Johnson, D.S.: Computers and Intractability. W.H. Freeman, New York (1979)

    MATH  Google Scholar 

  35. Giunchiglia, E., Narizzano, M., Tacchella, A.: QuBE: A system for deciding quantified Boolean formulas satisfiability. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 364–369. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  36. Gottlob, G.: Complexity results for nonmonotonic logics. Journal of Logic and Computation 2(3), 397–425 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  37. Kautz, H., McAllester, D., Selman, B.: Encoding plans in propositional logic. In: Aiello, L., Doyle, J., Shapiro, S. (eds.) Proceedings of the Fifth International Conference on Principles of Knowledge Representation and Reasoning (KR 1996), pp. 374–384. Morgan Kaufmann Publishers, San Francisco (1996)

    Google Scholar 

  38. Kautz, H., Selman, B.: Planning as satisfiability. In: Neumann, B. (ed.) Proceedings of the Tenth European Conference on Artificial Intelligence (ECAI 1992), pp. 359–363. John Wiley & Sons, Chichester (1992)

    Google Scholar 

  39. Kleine Büning, H., Karpinski, M., Flögel, A.: Resolution for quantified Boolean formulas. Information and Computation 117(1), 12–18 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  40. Konieczny, S., Marquis, P.: Three-valued logics for inconsistency handling. In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp. 332–344. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  41. Ladner, R.E.: The computational complexity of provability in systems of modal propositional logic. SIAM Journal on Computing 6(3), 467–480 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  42. Leśniewski, S.: Grundzüge eines neuen System der Grundlagen der Mathematik. Fundamenta Mathematica 14, 1–81 (1929)

    MATH  Google Scholar 

  43. Letz, R.: Lemma and model caching in decision procedures for quantified Boolean formulas. In: Egly, U., Fermüller, C. (eds.) TABLEAUX 2002. LNCS (LNAI), vol. 2381, pp. 160–175. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  44. Levesque, H.: A knowledge-level account of abduction. In: Sridharan, N.S. (ed.) Proceedings of the Eleventh International Joint Conference on Artificial Intelligence (IJCAI 1989), pp. 1061–1067. Morgan Kaufmann Publishers, San Francisco (1989)

    Google Scholar 

  45. Łukasiewicz, J., Tarski, A.: Untersuchungen über den Aussagenkalkül. Comptes Rendus Séances Société des Sciences et Lettres Varsovie 23(Cl. III), 30–50 (1930)

    MATH  Google Scholar 

  46. McCarthy, J.: Circumscription - A form of nonmonotonic reasoning. Artificial Intelligence 13, 27–39 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  47. Meyer, A.R., Stockmeyer, L.J.: The equivalence problem for regular expressions with squaring requires exponential space. In: 13th Annual Symposium on Switching and Automata Theory, pp. 125–129 (1972)

    Google Scholar 

  48. Meyer, A.R., Stockmeyer, L.J.: Word problems requiring exponential time. In: ACM Symposium on Theory of Computing (STOC 1973), pp. 1–9. ACM Press, New York (1973)

    Google Scholar 

  49. Minato, S.: Binary Decision Diagrams and Applications for VLSI CAD. Kluwer, Dordrecht (1996)

    Book  MATH  Google Scholar 

  50. Mundici, D.: Satisfiability in many-valued sentential logic is NP-complete. Theoretical Computer Science 52(1-2), 145–153 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  51. Nebel, B.: Belief revision and default reasoning: Syntax-based approaches. In: Allen, J., Fikes, R., Sandewall, E. (eds.) Proceedings of the Second International Conference on Principles of Knowledge Representation and Reasoning (KR 1991), pp. 417–428. Morgan Kaufmann Publishers, San Francisco (1991)

    Google Scholar 

  52. Papadimitriou, C.: Computational Complexity. Addison-Wesley, Reading (1994)

    MATH  Google Scholar 

  53. Pearce, D., Tompits, H., Woltran, S.: Encodings for equilibrium logic and logic programs with nested expressions. In: Brazdil, P.B., Jorge, A.M. (eds.) EPIA 2001. LNCS (LNAI), vol. 2258, pp. 306–320. Springer, Heidelberg (2001)

    Google Scholar 

  54. Plaisted, D., Biere, A., Zhu, Y.: A satisfiability procedure for quantified Boolean formulae. Discrete Applied Mathematics 130, 291–328 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  55. Priest, G.: Logic of paradox. Journal of Philosophical Logic 8, 219–241 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  56. Priest, G.: Reasoning about truth. Artificial Intelligence 39, 231–244 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  57. Reiter, R.: A logic for default reasoning. Artificial Intelligence 13(1–2), 81–132 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  58. Rescher, N.: Plausible Reasoning. Van Gorcum, Amsterdam (1976)

    Google Scholar 

  59. Rescher, N., Manor, R.: On inference from inconsistent premises. Theory and Decision 1, 179–219 (1970)

    Article  MATH  Google Scholar 

  60. Rintanen, J.: Constructing conditional plans by a theorem prover. Journal of Artificial Intelligence Research 10, 323–352 (1999)

    MathSciNet  MATH  Google Scholar 

  61. Rintanen, J.: Improvements to the evaluation of quantified Boolean formulae. In: Dean, T. (ed.) Proceedings of the 16th International Joint Conference on Artificial Intelligence (IJCAI 1999), pp. 1192–1197. Morgan Kaufmann Publishers, San Francisco (1999)

    Google Scholar 

  62. Robinson, J.A.: A machine-oriented logic based on the resolution principle. Journal of the ACM 12(1), 23–41 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  63. Russell, B.: The theory of implication. American Journal of Mathematics 28(2), 159–202 (1906)

    Article  MathSciNet  MATH  Google Scholar 

  64. Schamberger, S.: Ein paralleler Algorithmus zum Lösen von Quantifizierten Boole’schen Formeln. Master’s thesis, Universität Gesamthochschule Paderborn (2000)

    Google Scholar 

  65. Srzednicki, J., Stachniak, Z. (eds.): Lesniewski’s Systems Protothetic, Dordrecht (1998)

    Google Scholar 

  66. Statman, R.: Intuitionistic propositional logic is polynomial-space complete. Theoretical Computer Science 9, 67–72 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  67. Stockmeyer, L.J.: The polynomial-time hierarchy. Theoretical Computer Science 3(1), 1–22 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  68. Tompits, H.: Expressing default abduction problems as quantified Boolean formulas. AI Communications 16, 89–105 (2003)

    MathSciNet  MATH  Google Scholar 

  69. Turner, H.: Polynomial-length planning spans the polynomial hierarchy. In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp. 111–124. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  70. Whitehead, A.N., Russell, B.: Principia Mathematica, vol. 1–3. Cambridge University Press, Cambridge (1910–13)

    Google Scholar 

  71. Woltran, S.: Quantified Boolean Formulas – From Theory to Practice. PhD thesis, Technische Universität Wien, Institut für Informationssysteme (2003)

    Google Scholar 

  72. Wrathall, C.: Complete sets and the polynomial-time hierarchy. Theoretical Computer Science 3(1), 23–33 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  73. Zhang, L., Malik, S.: Towards a symmetric treatment of satisfaction and conflicts in quantified Boolean formula evaluation. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 200–215. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Besnard, P., Schaub, T., Tompits, H., Woltran, S. (2005). Representing Paraconsistent Reasoning via Quantified Propositional Logic. In: Bertossi, L., Hunter, A., Schaub, T. (eds) Inconsistency Tolerance. Lecture Notes in Computer Science, vol 3300. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30597-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30597-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24260-4

  • Online ISBN: 978-3-540-30597-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics