Skip to main content

Paraconsistent Reasoning via Quantified Boolean Formulas, I: Axiomatising Signed Systems

  • Conference paper
  • First Online:
Logics in Artificial Intelligence (JELIA 2002)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2424))

Included in the following conference series:

Abstract.

Signed systems were introduced as a general, syntax-independent framework for paraconsistent reasoning, that is, non-trivialised reasoning from inconsistent information. In this paper, we show how the family of corresponding paraconsistent consequence relations can be axiomatised by means of quantified Boolean formulas. This approach has several benefits. First, it furnishes an axiomatic specification of paraconsistent reasoning within the framework of signed systems. Second, this axiomatisation allows us to identify upper bounds for the complexity of the different signed consequence relations. We strengthen these upper bounds by providing strict complexity results for the considered reasoning tasks. Finally, we obtain an implementation of different forms of paraconsistent reasoning by appeal to the existing system QUIP.

The work was partially supported by the Austrian Science Foundation under grant P15068.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Benferhat, D. Dubois, and H. Prade. Argumentative Inference in Uncertain and Inconsistent Knowledge Bases. In Proc. UAI-93, pages 411–419, 1993.

    Google Scholar 

  2. P. Besnard and T. Schaub. Signed Systems for Paraconsistent Reasoning. Journal of Automated Reasoning, 20:191–213, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  3. M. Cadoli, A. Giovanardi, and M. Schaerf. An Algorithm to Evaluate Quantified Boolean Formulae. In Proc. AAAI-98, pages 262–267. AAAI Press, 1998.

    Google Scholar 

  4. C. Cayrol, M. Lagasquie-Schiex, and T. Schiex. Nonmonotonic Reasoning: From Complexity to Algorithms. Ann. of Mathematics and Artificial Intelligence, 22(3–4):207–236, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  5. S. Coste-Marquis and P. Marquis. Complexity Results for Paraconsistent Inference Relations. In Proc. KR-02, pages 61–72, 2002.

    Google Scholar 

  6. J. Delgrande, T. Schaub, H. Tompits, and S. Woltran. On Computing Solutions to Belief Change Scenarios. In Proc. ECSQARU-01, pages 510–521. Springer Verlag, 2001.

    Google Scholar 

  7. U. Egly, T. Eiter, H. Tompits, and S. Woltran. Solving Advanced Reasoning Tasks Using Quantified Boolean Formulas. In Proc. AAAI-00, pages 417–422. AAAI Press, 2000.

    Google Scholar 

  8. T. Eiter, V. Klotz, H. Tompits, and S. Woltran. Modal Nonmonotonic Logics Revisited: Efficient Encodings for the Basic Reasoning Tasks. In Proc. TABLEAUX-02, 2002. To appear.

    Google Scholar 

  9. R. Feldmann, B. Monien, and S. Schamberger. ADistributedAlgorithm to Evaluate Quantifint Boolean Formula. In Proc. AAAI-00, pages 285–290. AAAI Press, 2000.

    Google Scholar 

  10. E. Giunchiglia, M. Narizzano, and A. Tacchella. QuBE: A System for Deciding Quantified Boolean Formulas Satisfiability. In Proc. IJCAR-01, pages 364–369. Springer Verlag, 2001.

    Google Scholar 

  11. G. Gottlob. Complexity Results for Nonmonotonic Logics. Journal of Logic and Computation, 2(3):397–425, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  12. G. Gottlob and Z. Mingyi. Cumulative Default Logic: Finite Characterization, Algorithms, and Complexity. Artificial Intelligence, 69(1–2):329–345, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  13. D. Pearce, H. Tompits, and S. Woltran. Encodings for Equilibrium Logic and Logic Programs with Nested Expressions. In Proc. EPIA-01, pages 306–320. Springer Verlag, 2001.

    Google Scholar 

  14. R. Reiter. A Logic for Default Reasoning. Artificial Intelligence, 13(1–2):81–132, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  15. H. Tompits. Expressing Default Abduction Problems as Quantified Boolean Formulas. In AI Communications, 2002. To appear.

    Google Scholar 

  16. C. Wrathall. Complete Sets and the Polynomial-Time Hierarchy. Theoretical Computer Science, 3(1):23–33, 1976.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Besnard, P., Schaub, T., Tompits, H., Woltran, S. (2002). Paraconsistent Reasoning via Quantified Boolean Formulas, I: Axiomatising Signed Systems. In: Flesca, S., Greco, S., Ianni, G., Leone, N. (eds) Logics in Artificial Intelligence. JELIA 2002. Lecture Notes in Computer Science(), vol 2424. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45757-7_27

Download citation

  • DOI: https://doi.org/10.1007/3-540-45757-7_27

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44190-8

  • Online ISBN: 978-3-540-45757-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics