Advertisement

Unconstrained 3D-Mesh Generation Applied to Map Building

  • Diego Viejo
  • Miguel Cazorla
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3287)

Abstract

3D map building is a complex robotics task which needs mathematical robust models. From a 3D point cloud, we can use the normal vectors to these points to do feature extraction. In this paper, we will present a robust method for normal estimation and unconstrained 3D-mesh generation from a not-uniformly distributed point cloud.

Keywords

Delaunay Triangulation Stereo Camera Triangle Mesh Geometric Primitive Odometry Error 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Thrun, S., Burgard, W., Fox, D.: A real-time algorithm for mobile robot mapping with applications to multi-robot and 3D mapping. In: Proc. of the IEEE International Conference on Robotics and Automation, ICRA (2000)Google Scholar
  2. 2.
    Thrun, S., Hähnel, D., Ferguson, D., Montemerlo, M., Triebel, R., Burgard, W., Baker, C., Omohundro, Z., Thayer, S., Whittaker, W.: A System for Volumetric Robotic Mapping of Abandoned Mines. In: Proceedings of the IEEE International Conference on Robotics and Automation, ICRA (2003)Google Scholar
  3. 3.
    Surmann, H., Nuchter, A., Hertzberg, J.: An autonomous mobile robot with a 3D laser range finder for 3D exploration and digitalization of indoor environments. Robotics and Autonomous Systems 45, 181–198 (2003)CrossRefGoogle Scholar
  4. 4.
    Saez, J.M., Escolano, F.: A Global 3D Map-Building Approach Using Stereo Vision. In: Proceedings of IEEE International Conference on Robotics and Automation, ICRA (2004)Google Scholar
  5. 5.
    Besl, P., McKay, N.: A method for registration of 3-d shapes. IEEE Trans. On Pattern Analysis and Machine Intelligence 14, 239–256 (1992)CrossRefGoogle Scholar
  6. 6.
    Cazorla, M., Fisher, B.: Characterizing local minima in 3d registration methods. Not yet published (2004)Google Scholar
  7. 7.
    Page, D.L., Sun, Y., Koschan, A.F., Paik, J., Abidi, M.A.: Normal vector voting: crease detection and curvature estimation on large, noisy meshes. Graphical Models, Special Issue on Larte Triangle Mesh Models 64, 199–229 (2002)zbMATHGoogle Scholar
  8. 8.
    Medioni, G., Lee, M., Tang, C.K.: A Computational Framework for Segmentation and Grouping. Elsevier Science Ltd., Amsterdam (2000)zbMATHGoogle Scholar
  9. 9.
    Mücke, E.: A Robust Implementation for Three-dimensional Delaunay Triangulations. In: Proceedings of the 1st International Computational Geometry Software Workshop (1995)Google Scholar
  10. 10.
    Hormann, K., Reimers, M.: Triangulating Point Clouds with Spherical Topology. Curve and Surface Design, 215–224 (2003)Google Scholar
  11. 11.
    Lee, D.T., Schchter, B.J.: Two algorithms for constructing a Delaunay triangulation. Int. J. of Computer and Information Science 9, 219–242 (1980)zbMATHCrossRefGoogle Scholar
  12. 12.
    de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry, Algoritms and Applications, pp. 181–183. Springer, Heidelberg (1991)Google Scholar
  13. 13.
    Petrie, G., Kennie, T.J.M.: Terrain modelling in Survey and Civil Engineering. Computer Aided Design 19(4) (1987)Google Scholar
  14. 14.
    Cignoni, P., Montani, C., Scopigno, R.: DeWall: a fast divide and conquer Delaunay triangulation algorithm. Ed. Computer-Aided Design 30, 333–341 (1998)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Diego Viejo
    • 1
  • Miguel Cazorla
    • 1
  1. 1.Robot Vision Group, Departamento de Ciencia de la Computación e Inteligencia ArtificialUniversidad de AlicanteAlicanteSpain

Personalised recommendations