
Unconstrained 3D-Mesh Generation Applied
to Map Building

Diego Viejo and Miguel Cazorla

Robot Vision Group
Departamento de Ciencia de la Computación e Inteligencia Artificial

Universidad de Alicante
E-03690, Alicante, Spain

Phone +34 96 590 39 00, Fax +34 96590 39 02
{dviejo,miguel}@dccia.ua.es

Abstract. 3D map building is a complex robotics task which needs
mathematical robust models. From a 3D point cloud, we can use the
normal vectors to these points to do feature extraction. In this paper, we
will present a robust method for normal estimation and unconstrained
3D-mesh generation from a not-uniformly distributed point cloud.

1 Introduction

Map building is a main task in robotics. This task estimates a map from sensor
data (sonar, laser, 3D data, ...). Our work is focused in 3D map building. We use
data from a stereo camera and our goal is to obtain geometric primitives (such
as planes, cylinders, and so on) from this data.

Some previous approaches has been proposed to 3D map building. Some of
them ([1], [2]) use a laser pointing upwards and taking data every small interval
of time. The triangulation between points turns out fast and easy. In [3] an
additional step is applied in order to reduce the error between two consecutive
steps. However, our main problem is the use of a stereo camera. In environments
with low texture the camera does not provide points and the point set is not
uniform. So, we have to address the “holes” inside data. We propose to use a
(robust) triangulation algorithm which takes into account these holes from data.

Our work will be guided from some assumptions. We assume that our robot
will work in a indoor (structured) environment. For this reason, we can guess
that the environment is formed from geometric primitives, like (mainly) planes
or cylinders. Extracting these primitives might help in the overall process. In
order to obtain these primitives we propose to use the normals obtained from
a triangulation of the point set. First, we apply a 3D pose registration method,
so that the odometry error is reduced. Then, with the rectified point set, we
triangulate it taking into account the limitations of our sensor, which is our
main contribution. Finally, we calculate the normals from the triangulation in a
robust way.

The rest of the paper is organized as follows: In Section 2, we describe the ex-
periment set, the hardware used and the method for pose registration. Section 3

A. Sanfeliu et al. (Eds.): CIARP 2004, LNCS 3287, pp. 241–248, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



242 Diego Viejo and Miguel Cazorla

describes the method developed for the estimation of normals. Section 4 intro-
duces the triangulation method which takes into account the non-uniformity of
data and, finally, some conclusions are drawn in Section 5.

2 Obtaining a 3D Point Set from a Stereo Camera

The experiment was realized in the faculty of Economics Sciences at the Uni-
versity of Alicante. In Figure 1 (right) we show the building plant and the ap-
proximate path performed by our robot. Our robot Frodo (see Figure 1 left) is
a Magellan Pro from RWI with a tri-stereo Digiclops camera (see [4] for more
details).

Fig. 1. Left: Robot and stereo camera used in the experiment. Right: Building plant
where the experiment was realized and path followed by the robot.

The camera provides us a 3D point set and the intensity value at each point.
While the robot is moving it takes 3D images approximately every 1 meter
or 15 degrees. We have the odometry information provided by the encoders
of the robot. This information yields an approximation of the actions realized
by the robot A = {a1, a2, . . . , an}, where each action ai = (xi, yi, θi). We can
obtain a reconstruction of the environment (map building) using this odometry
information. To do that, provided that the coordinates of the points are local to
every position of the robot, we must apply a transformation to the coordinates
of the points using such information.

Figure 2 (left) shows a zenithal view of the plant of this environment. Note
that points both from the floor and the roof have been removed which allows
to observe accurately the reconstruction. We can observe that certain problems
existing in the reconstruction come from odometry errors. In order to minimize
this we can use a pose registration method applied to two consecutive point sets.
The classic algorithm for 3D pose registration is ICP: Iterative Closest Point [5].
ICP calculates, iteratively, the best transformation between two point sets in two



Unconstrained 3D-Mesh Generation Applied to Map Building 243

steps. The first one, given an initial transformation, it calculates correspondences
between points using a distance criterion after applying the transformation. In
the second one, the latter correspondences are used to estimate the best trans-
formation in terms of minimum squares. The latter transformation is retained
for a new first step. ICP ensures convergence to a local minimum. A modified
algorithm [6] provides better results in terms of efficiency and it reduces the
odometry error. This algorithm rather than determining the correspondences by
one-way form, it uses random variables to estimate the probability that a given
point in one set matches another one in the other set. Figure 2 (right) shows the
result of applying such algorithm.

Fig. 2. Zenithal view of the floor of the reconstructed environment. Left: using odom-
etry. Right: Using ICP-EM.

3 Normal Classification

The aim of this work is to extract geometric primitives from a cloud of 3D points,
which have been obtained from the environment in the latter step. As we set
before, we assume that our environment can be described from planar surfaces.
We estimate the normal vectors of the underlying surfaces on each of the 3D
points extracted from the environment. A later geometric primitive recognition
will depend on the robustness of this normal estimation step.

Normal estimation relies on the method described in [7]: given a triangle mesh
it returns the normal at each vertex of this mesh. The basic idea is to select a
region from the mesh around a vertex. This region is specified in terms of geodesic
neighborhood of the vertex. Each triangle Ti in this neighborhood casts a vote
Ni which depends on the normal vector of the plane that contains the triangle.
To avoid the problem that normals with opposite orientation annihilate each
other, Ni is represented as a covariance matrix Vi = NiN

t
i . Votes are collected

as a weighted matrix sum Vv with

Vv =
∑

wiVi =
∑

wiNiN
t
i (1)



244 Diego Viejo and Miguel Cazorla

wi =
Ai

Amax
exp(−gi

σ
) (2)

where Ai is the area of Ti, Amax is the area of the largest triangle in the entire
mesh, gi is the geodesic distance of Ti from v, and σ controls the rate of decay.
Figure 3 shows the effects of the rate of decay. The lower σ the higher the
smoothness of the normals obtained.

Fig. 3. Normals projection on a semi-sphere using several rates of decay, from left to
right: σ = 5/3cm, σ = 5/9cm and σ = 5/15cm.

With these equations we obtain knowledge about the variance instead of
loosing information about normal sign orientation. This knowledge allows us
to draw conclusions about the relative orientation of the vertex. So, we can
decompose Vv using eigen-analysis and then classify vertex v. Since Vv is a
symmetric semidefinite matrix, eigen-decomposition generates real eigenvalues
λ1 ≥ λ2 ≥ λ3 ≥ 0 with corresponding eigenvectors E1, E2, end E3. With this
information we can define the saliency map [8] as:

Ss = λ1 − λ2,

Sc = λ2 − λ3,

Sn = λ3 (3)

And so, we propose the following vertex classification scheme for the eigenvalues
of Vv at each vertex:

maxSs, εSc, εηSn =






Ss : surface matches with normal Nv = E1;
εSc : crease junction with tangent Tv = E3;
εηSn : no preferred orientation

(4)

where 0 ≤ ε ≤ ∞ and 0 ≤ η ≤ ∞ are constants that control the relative
significance of the saliency measures. Given such a classification we are interested
in vertices Nv = E1, and we can filter the rest. Using vector voting, we can
calculate the normal of a 3D point from a triangle mesh. However, prior to
obtain normals we must compute the triangulation. Our approach is addressed
to generate a Delaunay triangulation from 3D points, which is explained in the
next section.



Unconstrained 3D-Mesh Generation Applied to Map Building 245

4 Triangle Mesh Generation

The Delaunay triangulation of a set of 3D points is a well-known topic in the
literature. Many of these methods [9, 10] obtain the triangulation for a 3D solid.
Nevertheless, our problem cannot be solved by these approaches since we cannot
assume that our set of points comes from a 3D solid. Mainly, our data comes
from walls of corridors and rooms where the robot moves. Walls are, in fact, 2D
surfaces in a 3D space. Others approaches [12, 13] are used to build topographic
maps from a piece of terrain. These methods also build a mesh from a 2D surface
in a 3D space, but really what they do is to project the 3D points over a horizontal
plane, and so, final calculation is a 2D Delaunay triangulation.

Our approach wants to resolve a Delaunay triangulation of clouds of 3D
points without either any consideration about sensor geometry or data coming
from a closed volume. On the other hand, due to the nature of the problem
that we want to solve, we introduce a constraint about the maximum size of the
triangles in the mesh in order to maintain openings between walls or between
a wall and any nearby objects from the environment. To solve this, we use a
divide & conquer (D&C) schema that is based on the recursive partition and
local triangulation of the point set, follow by a merging phase where the resulting
triangulations are joined.

In general, D&C methods work well in 2D spaces, but nevertheless, to do the
same in 3D space is not a simple task because merging is simple in 2D [11] but
hard to design in more than two dimensions. DeWall [14] proposed an interesting
triangulation method that uses a D&C strategy by reversing the order between
the solutions of sub-problems and the merging phase. Instead of merging partial
results, it applies a more complex dividing phase which partitions a set and
builds, as first step, the merging triangulation.

In order to build our mesh (see figure 4), we use this idea and then we incor-
porate the constraints imposed by the problem. First, DeWall uses a tetrahedron
as geometric basic entity to build a mesh from a set of 3D points that form a
closed volume. The supposition of closed volume is not fulfilled in our case and
it would be a source of problems due to the high noise that we must handle.
For this, we are going to use the triangle as geometric basic entity to calcu-
late the triangulation, in spite of the tetrahedron. This idea arises from the fact
that we are triangulating points from 2D planes inside a 3D environment and,
in general, to build a triangulation from 2D points the geometric basic entity
is the triangle. In addition, we have to consider the fact that the triangle size
constraint has a consequence: it might happen that certain parts of the space
remain unconnected and, therefore, not be triangulated. For this reason, before
the triangulation process, we compute clusters of connected points which will be
the input to this triangulation process.

Our mesh generation approach is as follows: First, we use a plane α to split the
space in two half spaces. Then, we compute the merging triangulation Σα using
the splitting plane α. The technique used to build the Σα is a slight variation on
an incremental construction algorithm: a starting triangle is founded and then
Σα is built by adding a new triangle at each step. To find the first triangle we



246 Diego Viejo and Miguel Cazorla

function Triange Builder (P: point set, Lα: side list): triangle list
var f: side; , Ll, Lr: side list;

t: triangle; Σ: triangle list; α: splitting plane;
begin

if Lα = Ø then
t:=FindFisrtTriangle(P, α);
Σ := Σ ∪ t;
for each f’: f’∈ Sides(t) do

if IsIntersected(f’, α) then Insert(f’, Lα);
if InHalfSpaceL(f’, α) then Insert(f’, Ll);
if InHalfSpaceR(f’, α) then Insert(f’, Lr);

while Lα! = Ø
f:=Extract(Lα);
t:=FindTriangle(f, P);
if t �= null then

Σ := Σ ∪ t;
for each f’: f’∈ Sides(t) AND f’ �= f do

if IsIntersected(f’, α) then Insert(f’, Lα);
if InHalfSpaceL(f’, α) then Insert(f’, Ll);
if InHalfSpaceR(f’, α) then Insert(f’, Lr);

/*Recursive Triangulation*/
if Ll �= Ø then Σ := Σ ∪ Triangulator(P,Ll);
if Lr �= Ø then Σ := Σ ∪ Triangulator(P,Lr);
Triange Builder:=Σ;

end.

Fig. 4. Algorithm Triange Builder computes 3D Delaunay triangulation.

select the nearest point p1 to plane α. Then, we select a second point p2 such
that it is the nearest point to p1 on the other side of α. From p1 and p2 we search
the point p3 such that the circum-circle around p1, p2 and p3 has the minimum
radius ri. The center of the circum-circle are extracted and we can compute
a sphere with center ci and radius ri. Finally, to accept p3 as the point which
complete the triangle, it has to fulfill a pair of conditions. First, the Delaunay
condition: no one point is inside the sphere; second, point p3 is near enough from
p1 and p2 to accomplish the triangle size constraint.

The rest of Σα is built from the first triangle. We label each triangle side as
it lies completely contained in one of the two half-spaces (left or right) defined
by α or it is intersected by the plane. We use three lists Ll, Lr and Lα to insert
the triangles sides depending on their label. We extract a side from Lα and
search for a new triangle, but now we must consider that this side comes from
an exiting triangle. Each side of a triangle has a plane β which is perpendicular
to the triangle. β divides the space into two half-spaces, therefore, we just search
the next triangle in the valid half-space. The sides of the new triangle are now
inserted in the corresponding list.

In Figure 5(left) we show a detail of a 3D point set. Figure 5(Center) shows
the result of applying our proposed algorithm to generate the triangulation of



Unconstrained 3D-Mesh Generation Applied to Map Building 247

the points: unconnected zones appear due to the absence of information and the
constraint of the maximum size of triangle imposed. In Figure 5 (right) normal
vectors calculated from the triangle mesh are shown.

Fig. 5. Detail of normal estimation process. Top: Left: source 3D points. Center: trian-
gle mesh. Right: resulting normals. Bottom: Left: normals before normalization. Right:
normals after normalization.

5 Conclusions and Future Work

The line of work that we are following tries to obtain a 3D map of an environ-
ment. In this paper we improved the method of normals estimation, endowing
it with higher robustness. For this, it has been necessary to develop a method
to build a mesh of triangles from the point set. The method proposed obtains
a triangulation from the point set, taking into account that our data are not
uniformly distributed. The work is completed by the previous phase of recon-
struction of the environment.

As continuation of this work we try to address the SLAM problem in order
to improve the reconstruction of the 3D map. In addition we want to build
a robust system of constraints that allows us to obtain geometric primitives
(planes, cylinders, boxes, and so on) from the normals obtained.

Acknowledgments

This work has been supported by grant TIC2002-02792 funded by Ministerio de
Ciencia y Tecnoloǵıa and FEDER.



248 Diego Viejo and Miguel Cazorla

References

1. S. Thrun, W. Burgard, and D. Fox: A real-time algorithm for mobile robot mapping
with applications to multi-robot and 3D mapping. In Proc. of the IEEE Interna-
tional Conference on Robotics and Automation (ICRA) (2000)

2. S. Thrun and D. Hähnel and D. Ferguson and M. Montemerlo and R. Triebel and
W. Burgard and C. Baker and Z. Omohundro and S. Thayer and W. Whittaker: A
System for Volumetric Robotic Mapping of Abandoned Mines. In Proceedings of
the IEEE International Conference on Robotics and Automation (ICRA) (2003)

3. H. Surmann and A. Nuchter and J. Hertzberg: An autonomous mobile robot with a
3D laser range finder for 3D exploration and digitalization of indoor environments.
Robotics and Autonomous Systems. 45 (2003) 181-198

4. J.M. Saez and F. Escolano: A Global 3D Map-Building Approach Using Stereo
Vision. In Proceedings of IEEE International Conference on Robotics and Au-
tomation (ICRA) (2004)

5. P. Besl and N. McKay: A method for registration of 3-d shapes. IEEE Trans. On
Pattern Analysis and Machine Intelligence, 14 (1992) 239-256

6. M. Cazorla and B. Fisher: Characterizing local minima in 3d registration methods.
Not yet published, (2004)

7. D. L. Page, Y. Sun, A. F. Koschan, J. Paik and M. A. Abidi: Normal vector
voting: crease detection and curvature estimation on large, noisy meshes. Graphical
Models, Special Issue on Larte Triangle Mesh Models, 64 (2002) 199-229

8. G. Medioni, M. Lee, and C. K. Tang. A Computational Framework for Segmenta-
tion and Grouping, Elsevier Science Ltd., Amsterdam (2000)

9. E. Mücke: A Robust Implementation for Three-dimensional Delaunay Triangula-
tions. In Proceedings of the 1st International Computational Geometry Software
Workshop (1995)

10. K. Hormann and M. Reimers: Triangulating Point Clouds with Spherical Topology.
Curve and Surface Design (2003) 215-224

11. D. T. Lee and B.J. Schchter: Two algorithms for constructing a Delaunay triangu-
lation. Int. J. of Computer and Information Science, 9 (1980) 219-242

12. M. de Berg, M. van Kreveld, M. Overmars and O. Schwarzkopf: Computational
Geometry, Algoritms and Applications. Ed. Springer (1991) 181-183.

13. G. Petrie and T.J.M Kennie: Terrain modelling in Survey and Civil Engineering.
Computer Aided Design, 19, number 4 (1987).

14. P. Cignoni, C. Montani and R. Scopigno: DeWall: a fast divide and conquer De-
launay triangulation algorithm. Ed. Computer-Aided Design 30 (1998) 333-341


	1 Introduction
	2 Obtaining a 3D Point Set from a Stereo Camera
	3 Normal Classification
	4 Triangle Mesh Generation
	5 Conclusions and Future Work
	References



