Skip to main content

Computing Schedules for Multithreaded Real-Time Programs Using Geometry

  • Conference paper
Formal Techniques, Modelling and Analysis of Timed and Fault-Tolerant Systems (FTRTFT 2004, FORMATS 2004)

Abstract

We describe a novel technique for computing efficient schedules for multi-threaded real-time programs. The technique makes use of abstractions which are constructed by embedding the model of the program in a geometric space and then constructing a decomposition of this space. This embedding uses the model of PV diagrams. We introduce a timed version for PV programs and diagrams, which allows us to define the worst-case response time of the schedules, and then to use the geometric abstractions for computing efficient schedules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdeddaïm, Y., Maler, O.: Job-shop scheduling using timed automata. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 478–492. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  2. Altisen, K., Gößler, G., Sifakis, J.: Scheduler modelling based on the controller synthesis paradigm. Journal of Real-Time Systems (23), 55–84 (2002); Special issue on control-theoretical approaches to real-time computing

    Article  MATH  Google Scholar 

  3. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126(2), 183–235 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  4. Alur, R., La Torre, S., Pappas, G.: Optimal paths in weighted timed automata. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 49–62. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  5. Bournez, O., Maler, O., Pnueli, A.: Orthogonal polyhedra: Representation and computation. In: Vaandrager, F.W., van Schuppen, J.H. (eds.) HSCC 1999. LNCS, vol. 1569, p. 46. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  6. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C.: Maude 2.0 Manual. SRI International (2003)

    Google Scholar 

  7. Cridlig, R., Goubault, E.: Semantics and analysis of Linda-based languages. In: Cousot, P., Filé, G., Falaschi, M., Rauzy, A. (eds.) WSA 1993. LNCS, vol. 724, Springer, Heidelberg (1993)

    Google Scholar 

  8. Dijkstra, E.W.: Co-operating sequential processes. In: Genuys, F. (ed.) Programming Languages, pp. 43–110. Academic Press, London (1968)

    Google Scholar 

  9. Fahrenberg, U.: The geometry of timed PV programs. Electronic Notes in Theoretical Computer Science, vol. 81. Elsevier, Amsterdam (2003)

    Google Scholar 

  10. Fajstrup, L., Goubault, E., Raussen, M.: Detecting deadlocks in concurrent systems. In: Best, E. (ed.) CONCUR 1993. LNCS, vol. 715, pp. 332–347. Springer, Heidelberg (1993)

    Google Scholar 

  11. Fajstrup, L., Sokolowski, S.: Infinitely running concurrent processes with loops from a geometric viewpoint. Electronic Notes in Theoretical Computer Science, vol. 39. Elsevier, Amsterdam (2001)

    Google Scholar 

  12. Gerner, P., Dang, T.: Computing schedules for multithreaded real-time programs using geometry. Technical Report TR-2004-08, Verimag (March 2004)

    Google Scholar 

  13. Goubault, E.: Schedulers as abstract interpretations of higher-dimensional automata. In: Proc. of PEPM 1995, La Jolla (1995)

    Google Scholar 

  14. Goubault, E.: Transitions take time. In: Riis Nielson, H. (ed.) ESOP 1996. LNCS, vol. 1058, pp. 173–187. Springer, Heidelberg (1996)

    Google Scholar 

  15. Goubault, E.: Geometry and concurrency: A user’s guide. Mathematical Structures in Computer Science 10(4) (August 2000)

    Google Scholar 

  16. Kloukinas, C., Nakhli, C., Yovine, S.: A methodology and tool support forgenerating scheduled native code for real-time java applications. In: Alur, R., Lee, I. (eds.) EMSOFT 2003. LNCS, vol. 2855, pp. 274–289. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  17. Rasmussen, J.I., Larsen, K.G., Subramani, K.: Resource-optimal scheduling using priced timed automata. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 220–235. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gerner, P., Dang, T. (2004). Computing Schedules for Multithreaded Real-Time Programs Using Geometry. In: Lakhnech, Y., Yovine, S. (eds) Formal Techniques, Modelling and Analysis of Timed and Fault-Tolerant Systems. FTRTFT FORMATS 2004 2004. Lecture Notes in Computer Science, vol 3253. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30206-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30206-3_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23167-7

  • Online ISBN: 978-3-540-30206-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics