Skip to main content

Friction and Wear on the Atomic Scale

  • Reference work entry
Springer Handbook of Nanotechnology

Part of the book series: Springer Handbooks ((SHB))

Abstract

Friction has long been the subject of research: the empirical da Vinci–Amontons friction laws have been common knowledge for centuries. Macroscopic experiments performed by the school of Bowden and Tabor revealed that macroscopic friction can be related to the collective action of small asperities. Over the last 15 years, experiments performed with the atomic force microscope have provided new insights into the physics of single asperities sliding over surfaces. This development, together with the results from complementary experiments using surface force apparatus and the quartz microbalance, have led to the new field of nanotribology. At the same time, increasing computing power has permitted the simulation of processes that occur during sliding contact involving several hundreds of atoms. It has become clear that atomic processes cannot be neglected when interpreting nanotribology experiments. Even on well-defined surfaces, experiments have revealed that atomic structure is directly linked to friction force. This chapter will describe friction force microscopy experiments that reveal, more or less directly, atomic processes during sliding contact.

We will begin by introducing friction force microscopy, including the calibration of cantilever force sensors and special aspects of the ultrahigh vacuum environment. The empirical Tomlinson model often used to describe atomic stick-slip results is therefore presented in detail. We review experimental results regarding atomic friction, including thermal activation, velocity dependence and temperature dependence. The geometry of the contact is crucial to the interpretation of experimental results, such as the calculation of the lateral contact stiffness, as we shall see. The onset of wear on the atomic scale has recently been sudied experimentally and it is described here. In order to compare results, we present molecular dynamics simulations that are directly related to atomic friction experiments. The chapter ends with a discussion of dissipation measurements performed in noncontact force microscopy, which may become an important complementary tool for the study of mechanical dissipation in nanoscopic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AFM:

atomic force microscopy

DMT:

Derjaguin–Muller–Toporov

FFM:

friction force microscope

FKT:

Frenkel–Kontorova–Tomlinson

JKR:

Johnson–Kendall–Roberts

LFM:

lateral force microscopy

MD:

molecular dynamics

PTFE:

polytetrafluoroethylene

SEM:

scanning electron microscopy

UHV:

ultrahigh vacuum

References

  1. C. M. Mate, G. M. McClelland, R. Erlandsson, S. Chiang: Atomic-scale friction of a tungsten tip on a graphite surface, Phys. Rev. Lett. 59, 1942–1945 (1987)

    CAS  Google Scholar 

  2. G. Binnig, C. F. Quate, Ch. Gerber: Atomic force microscope, Phys. Rev. Lett. 56, 930–933 (1986)

    Google Scholar 

  3. O. Marti, J. Colchero, J. Mlynek: Combined scanning force and friction microscopy of mica, Nanotechnology 1, 141–144 (1990)

    Google Scholar 

  4. G. Meyer, N. Amer: Simultaneous measurement of lateral and normal forces with an optical-beam-deflection atomic force microscope, Appl. Phys. Lett. 57, 2089–2091 (1990)

    CAS  Google Scholar 

  5. G. Neubauer, S. R. Cohen, G. M. McClelland, D. E. Horn, C. M. Mate: Force microscopy with a bidirectional capacitance sensor, Rev. Sci. Instrum. 61, 2296–2308 (1990)

    CAS  Google Scholar 

  6. G. M. McClelland, J. N. Glosli: Friction at the atomic scale. In: NATO ASI Series E, Vol. 220, ed. by L. Singer, H. M. Pollock (Kluwer, Dordrecht 1992) pp. 405–425

    Google Scholar 

  7. R. Linnemann, T. Gotszalk, I. W. Rangelow, P. Dumania, E. Oesterschulze: Atomic force microscopy and lateral force microscopy using piezoresistive cantilevers, J. Vacuum Sci. Technol. B 14, 856–860 (1996)

    CAS  Google Scholar 

  8. M. Nonnenmacher, J. Greschner, O. Wolter, R. Kassing: Scanning force microscopy with micromachined silicon sensors, J. Vacuum Sci. Technol. B 9, 1358–1362 (1991)

    CAS  Google Scholar 

  9. R. Lüthi: Untersuchungen zur Nanotribologie und zur Auflösungsgrenze im Ultrahochvakuum mittels Rasterkraftmikroskopie. Ph.D. Thesis (Univ. of Basel, Basel 1996)

    Google Scholar 

  10. J. Cleveland, S. Manne, D. Bocek, P. K. Hansma: A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy, Rev. Sci. Instrum. 64, 403–405 (1993)

    CAS  Google Scholar 

  11. J. L. Hutter, J. Bechhoefer: Calibration of atomic-force microscope tips, Rev. Sci. Instrum. 64, 1868–1873 (1993)

    CAS  Google Scholar 

  12. H. J. Butt, M. Jaschke: Calculation of thermal noise in atomic-force microscopy, Nanotechnology 6, 1–7 (1995)

    Google Scholar 

  13. J. M. Neumeister, W. A. Ducker: Lateral, normal, and longitudinal spring constants of atomic-force microscopy cantilevers, Rev. Sci. Instrum. 65, 2527–2531 (1994)

    Google Scholar 

  14. D. F. Ogletree, R. W. Carpick, M. Salmeron: Calibration of frictional forces in atomic force microscopy, Rev. Sci. Instrum. 67, 3298–3306 (1996)

    CAS  Google Scholar 

  15. E. Gnecco: AFM study of friction phenomena on the nanometer scale. Ph.D. Thesis (Univ. of Genova, Genova 2001)

    Google Scholar 

  16. U. D. Schwarz, P. Köster, R. Wiesendanger: Quantitative analysis of lateral force microscopy experiments, Rev. Sci. Instrum. 67, 2560–2567 (1996)

    CAS  Google Scholar 

  17. E. Meyer, R. Lüthi, L. Howald, M. Bammerlin, M. Guggisberg, H.-J. Güntherodt: Site-specific friction force spectroscopy, J. Vacuum Sci. Technol. B 14, 1285–1288 (1996)

    CAS  Google Scholar 

  18. S. S. Sheiko, M. Möller, E. M. C. M. Reuvekamp, H. W. Zandberger: Calibration and evaluation of scanning-force microscopy probes, Phys. Rev. B 48, 5675 (1993)

    CAS  Google Scholar 

  19. F. Atamny, A. Baiker: Direct imaging of the tip shape by AFM, Surf. Sci. 323, L314 (1995)

    CAS  Google Scholar 

  20. J. S. Villarrubia: Algorithms for scanned probe microscope image simulation, surface reconstruction, and tip estimation, J. Res. Natl. Inst. Stand. Technol. 102, 425–454 (1997)

    Google Scholar 

  21. L. Howald, E. Meyer, R. Lüthi, H. Haefke, R. Overney, H. Rudin, H.-J. Güntherodt: Multifunctional probe microscope for facile operation in ultrahigh vacuum, Appl. Phys. Lett. 63, 117–119 (1993)

    CAS  Google Scholar 

  22. Q. Dai, R. Vollmer, R. W. Carpick, D. F. Ogletree, M. Salmeron: A variable temperature ultrahigh vacuum atomic force microscope, Rev. Sci. Instrum. 66, 5266–5271 (1995)

    CAS  Google Scholar 

  23. G. A. Tomlinson: A molecular theory of friction, Philos. Mag. Ser. 7, 905 (1929)

    CAS  Google Scholar 

  24. T. Gyalog, M. Bammerlin, R. Lüthi, E. Meyer, H. Thomas: Mechanism of atomic friction, Europhys. Lett. 31, 269–274 (1995)

    CAS  Google Scholar 

  25. T. Gyalog, H. Thomas: Friction between atomically flat surfaces, Europhys. Lett. 37, 195–200 (1997)

    CAS  Google Scholar 

  26. M. Weiss, F. J. Elmer: Dry friction in the Frenkel–Kontorova–Tomlinson model: Static properties, Phys. Rev. B 53, 7539–7549 (1996)

    CAS  Google Scholar 

  27. J. B. Pethica: Comment on “Interatomic forces in scanning tunneling microscopy: Giant corrugations of the graphite surface”, Phys. Rev. Lett. 57, 3235 (1986)

    CAS  Google Scholar 

  28. E. Meyer, R. M. Overney, K. Dransfeld, T. Gyalog: Nanoscience, Friction and Rheology on the Nanometer Scale (World Scientific, Singapore 1998)

    Google Scholar 

  29. A. Socoliuc, R. Bennewitz, E. Gnecco, E. Meyer: Transition from stick-slip to continuous sliding in atomic friction: Entering a new regime of ultralow friction, Phys. Rev. Lett. 92, 134301 (2004)

    CAS  Google Scholar 

  30. L. Howald, R. Lüthi, E. Meyer, H.-J. Güntherodt: Atomic-force microscopy on the Si(111)7 × 7 surface, Phys. Rev. B 51, 5484–5487 (1995)

    CAS  Google Scholar 

  31. R. Bennewitz, T. Gyalog, M. Guggisberg, M. Bammerlin, E. Meyer, H.-J. Güntherodt: Atomic-scale stick-slip processes on Cu(111), Phys. Rev. B 60, R11301–R11304 (1999)

    CAS  Google Scholar 

  32. R. Lüthi, E. Meyer, M. Bammerlin, L. Howald, H. Haefke, T. Lehmann, C. Loppacher, H.-J. Güntherodt, T. Gyalog, H. Thomas: Friction on the atomic scale: An ultrahigh vacuum atomic force microscopy study on ionic crystals, J. Vacuum Sci. Technol. B 14, 1280–1284 (1996)

    Google Scholar 

  33. G. J. Germann, S. R. Cohen, G. Neubauer, G. M. McClelland, H. Seki: Atomic-scale friction of a diamond tip on diamond (100) and (111) surfaces, J. Appl. Phys. 73, 163–167 (1993)

    CAS  Google Scholar 

  34. R. J. A. van den Oetelaar, C. F. J. Flipse: Atomic-scale friction on diamond(111) studied by ultrahigh vacuum atomic force microscopy, Surf. Sci. 384, L828–L835 (1997)

    Google Scholar 

  35. R. Bennewitz, E. Gnecco, T. Gyalog, E. Meyer: Atomic friction studies on well-defined surfaces, Tribol. Lett. 10, 51–56 (2001)

    CAS  Google Scholar 

  36. S. Fujisawa, E. Kishi, Y. Sugawara, S. Morita: Atomic-scale friction observed with a two-dimensional frictional-force microscope, Phys. Rev. B 51, 7849–7857 (1995)

    CAS  Google Scholar 

  37. N. Sasaki, M. Kobayashi, M. Tsukada: Atomic-scale friction image of graphite in atomic-force microscopy, Phys. Rev. B 54, 2138–2149 (1996)

    CAS  Google Scholar 

  38. H. Kawakatsu, T. Saito: Scanning force microscopy with two optical levers for detection of deformations of the cantilever, J. Vacuum Sci. Technol. B 14, 872–876 (1996)

    CAS  Google Scholar 

  39. M. Hirano, K. Shinjo, R. Kaneko, Y. Murata: Anisotropy of frictional forces in muscovite mica, Phys. Rev. Lett. 67, 2642–2645 (1991)

    CAS  Google Scholar 

  40. M. Hirano, K. Shinjo, R. Kaneko, Y. Murata: Observation of superlubricity by scanning tunneling microscopy, Phys. Rev. Lett. 78, 1448–1451 (1997)

    CAS  Google Scholar 

  41. M. Liley, D. Gourdon, D. Stamou, U. Meseth, T. M. Fischer, C. Lautz, H. Stahlberg, H. Vogel, N. A. Burnham, C. Duschl: Friction anisotropy and asymmetry of a compliant monolayer induced by a small molecular tilt, Science 280, 273–275 (1998)

    CAS  Google Scholar 

  42. R. Lüthi, E. Meyer, H. Haefke, L. Howald, W. Gutmannsbauer, H.-J. Güntherodt: Sled-type motion on the nanometer scale: Determination of dissipation and cohesive energies of C60, Science 266, 1979–1981 (1994)

    Google Scholar 

  43. M. R. Falvo, J. Steele, R. M. Taylor, R. Superfine: Evidence of commensurate contact and rolling motion: AFM manipulation studies of carbon nanotubes on HOPG, Tribol. Lett. 9, 73–76 (2000)

    CAS  Google Scholar 

  44. R. M. Overney, H. Takano, M. Fujihira, W. Paulus, H. Ringsdorf: Anisotropy in friction and molecular stick-slip motion, Phys. Rev. Lett. 72, 3546–3549 (1994)

    CAS  Google Scholar 

  45. H. Takano, M. Fujihira: Study of molecular scale friction on stearic acid crystals by friction force microscopy, J. Vacuum Sci. Technol. B 14, 1272–1275 (1996)

    CAS  Google Scholar 

  46. M. Dienwiebel, G. Verhoeven, N. Pradeep, J. Frenken, J. Heimberg, H. Zandbergen: Superlubricity of graphite, Phys. Rev. Lett. 92, 126101 (2004)

    Google Scholar 

  47. P. E. Sheehan, C. M. Lieber: Nanotribology and nanofabrication of MoO3 structures by atomic force microscopy, Science 272, 1158–1161 (1996)

    CAS  Google Scholar 

  48. E. Gnecco, R. Bennewitz, T. Gyalog, Ch. Loppacher, M. Bammerlin, E. Meyer, H.-J. Güntherodt: Velocity dependence of atomic friction, Phys. Rev. Lett. 84, 1172–1175 (2000)

    CAS  Google Scholar 

  49. D. Gourdon, N. A. Burnham, A. Kulik, E. Dupas, F. Oulevey, G. Gremaud, D. Stamou, M. Liley, Z. Dienes, H. Vogel, C. Duschl: The dependence of friction anisotropies on the molecular organization of LB films as observed by AFM, Tribol. Lett. 3, 317–324 (1997)

    CAS  Google Scholar 

  50. Y. Sang, M. Dubé, M. Grant: Thermal effects on atomic friction, Phys. Rev. Lett. 87, 174301 (2001)

    CAS  Google Scholar 

  51. E. Riedo, E. Gnecco, R. Bennewitz, E. Meyer, H. Brune: Interaction potential and hopping dynamics governing sliding friction, Phys. Rev. Lett. 91, 084502 (2003)

    CAS  Google Scholar 

  52. P. Reimann, M. Evstigneev: Nonmonotonic velocity dependence of atomic friction, Phys. Rev. Lett. 93, 230802 (2004)

    Google Scholar 

  53. C. Fusco, A. Fasolino: Velocity dependence of atomic-scale friction: A comparative study of the one- and two-dimensional Tomlinson model, Phys. Rev. B 71, 45413 (2005)

    Google Scholar 

  54. O. Zwörner, H. Hölscher, U. D. Schwarz, R. Wiesendanger: The velocity dependence of frictional forces in point-contact friction, Appl. Phys. A 66, 263–267 (1998)

    Google Scholar 

  55. T. Bouhacina, J. P. Aimé, S. Gauthier, D. Michel, V. Heroguez: Tribological behavior of a polymer grafted on silanized silica probed with a nanotip, Phys. Rev. B 56, 7694–7703 (1997)

    CAS  Google Scholar 

  56. H. J. Eyring: The activated complex in chemical reactions, J. Chem. Phys. 3, 107 (1937)

    Google Scholar 

  57. J. N. Glosli, G. M. McClelland: Molecular dynamics study of sliding friction of ordered organic monolayers, Phys. Rev. Lett. 70, 1960–1963 (1993)

    CAS  Google Scholar 

  58. O. Pfeiffer, R. Bennewitz, A. Baratoff, E. Meyer, P. Grütter: Lateral-force measurements in dynamic force microscopy, Phys. Rev. B 65, 161403 (2002)

    Google Scholar 

  59. E. Riedo, F. Lévy, H. Brune: Kinetics of capillary condensation in nanoscopic sliding friction, Phys. Rev. Lett. 88, 185505 (2002)

    Google Scholar 

  60. M. He, A. S. Blum, G. Overney, R. M. Overney: Effect of interfacial liquid structuring on the coherence length in nanolubrucation, Phys. Rev. Lett. 88, 154302 (2002)

    Google Scholar 

  61. F. P. Bowden, F. P. Tabor: The Friction and Lubrication of Solids (Oxford Univ. Press, Oxford 1950)

    Google Scholar 

  62. L. D. Landau, E. M. Lifshitz: Introduction to Theoretical Physics (Nauka, Moscow 1998) Vol. 7

    Google Scholar 

  63. J. A. Greenwood, J. B. P. Williamson: Contact of nominally flat surfaces, Proc. R. Soc. Lond. A 295, 300 (1966)

    CAS  Google Scholar 

  64. B. N. J. Persson: Elastoplastic contact between randomly rough surfaces, Phys. Rev. Lett. 87, 116101 (2001)

    CAS  Google Scholar 

  65. U. D. Schwarz, O. Zwörner, P. Köster, R. Wiesendanger: Quantitative analysis of the frictional properties of solid materials at low loads, Phys. Rev. B 56, 6987–6996 (1997)

    CAS  Google Scholar 

  66. K. L. Johnson, K. Kendall, A. D. Roberts: Surface energy and contact of elastic solids, Proc. R. Soc. Lond. A 324, 301 (1971)

    CAS  Google Scholar 

  67. B. V. Derjaguin, V. M. Muller, Y. P. Toporov: Effect of contact deformations on adhesion of particles, J. Colloid Interf. Sci. 53, 314–326 (1975)

    CAS  Google Scholar 

  68. D. Tabor: Surface forces and surface interactions, J. Colloid Interf. Sci. 58, 2–13 (1977)

    CAS  Google Scholar 

  69. D. Maugis: Adhesion of spheres: the JKR-DMT transition using a Dugdale model, J. Colloid Interf. Sci. 150, 243–269 (1992)

    CAS  Google Scholar 

  70. R. W. Carpick, N. Agraït, D. F. Ogletree, M. Salmeron: Measurement of interfacial shear (friction) with an ultrahigh vacuum atomic force microscope, J. Vacuum Sci. Technol. B 14, 1289–1295 (1996)

    CAS  Google Scholar 

  71. C. Polaczyk, T. Schneider, J. Schöfer, E. Santner: Microtribological behavior of Au(001) studied by AFM/FFM, Surf. Sci. 402, 454–458 (1998)

    Google Scholar 

  72. R. W. Carpick, D. F. Ogletree, M. Salmeron: Lateral stiffness: A new nanomechanical measurement for the determination of shear strengths with friction force microscopy, Appl. Phys. Lett. 70, 1548–1550 (1997)

    CAS  Google Scholar 

  73. J. N. Israelachvili, D. Tabor: Measurement of van der Waals dispersion forces in range 1.5 to 130 nm, Proc. R. Soc. Lond. A 331, 19 (1972)

    CAS  Google Scholar 

  74. S. P. Jarvis, A. Oral, T. P. Weihs, J. B. Pethica: A novel force microscope and point-contact probe, Rev. Sci. Instrum. 64, 3515–3520 (1993)

    CAS  Google Scholar 

  75. M. A. Lantz, S. J. O'Shea, M. E. Welland, K. L. Johnson: Atomic-force-microscope study of contact area and friction on NbSe2, Phys. Rev. B 55, 10776–10785 (1997)

    CAS  Google Scholar 

  76. K. L. Johnson: Contact Mechanics (Cambridge Univ. Press, Cambridge 1985)

    Google Scholar 

  77. M. Enachescu, R. J. A. van den Oetelaar, R. W. Carpick, D. F. Ogletree, C. F. J. Flipse, M. Salmeron: Atomic force microscopy study of an ideally hard contact: the diamond(111)/tungsten carbide interface, Phys. Rev. Lett. 81, 1877–1880 (1998)

    CAS  Google Scholar 

  78. M. Enachescu, R. J. A. van den Oetelaar, R. W. Carpick, D. F. Ogletree, C. F. J. Flipse, M. Salmeron: Observation of proportionality between friction and contact area at the nanometer scale, Tribol. Lett. 7, 73–78 (1999)

    CAS  Google Scholar 

  79. E. Gnecco, R. Bennewitz, E. Meyer: Abrasive wear on the atomic scale, Phys. Rev. Lett. 88, 215501 (2002)

    CAS  Google Scholar 

  80. S. Kopta, M. Salmeron: The atomic scale origin of wear on mica and its contribution to friction, J. Chem. Phys. 113, 8249–8252 (2000)

    CAS  Google Scholar 

  81. H. Tang, C. Joachim, J. Devillers: Interpretation of AFM images – the graphite surface with a diamond tip, Surf. Sci. 291, 439–450 (1993)

    CAS  Google Scholar 

  82. U. Landman, W. D. Luedtke, E. M. Ringer: Atomistic mechanisms of adhesive contact formation and interfacial processes, Wear 153, 3–30 (1992)

    CAS  Google Scholar 

  83. A. I. Livshits, A. L. Shluger: Self-lubrication in scanning force microscope image formation on ionic surfaces, Phys. Rev. B 56, 12482–12489 (1997)

    CAS  Google Scholar 

  84. H. Tang, X. Bouju, C. Joachim, C. Girard, J. Devillers: Theoretical study of the atomic-force microscopy imaging process on the NaCl(100) surface, J. Chem. Phys. 108, 359–367 (1998)

    CAS  Google Scholar 

  85. R. Bennewitz, A. S. Foster, L. N. Kantorovich, M. Bammerlin, Ch. Loppacher, S. Schär, M. Guggisberg, E. Meyer, A. L. Shluger: Atomically resolved edges and kinks of NaCl islands on Cu(111): Experiment and theory, Phys. Rev. B 62, 2074–2084 (2000)

    CAS  Google Scholar 

  86. U. Landman, W. D. Luetke, M. W. Ribarsky: Structural and dynamical consequences of interactions in interfacial systems, J. Vacuum Sci. Technol. A 7, 2829–2839 (1989)

    CAS  Google Scholar 

  87. M. R. Sørensen, K. W. Jacobsen, P. Stoltze: Simulations of atomic-scale sliding friction, Phys. Rev. B 53, 2101–2113 (1996)

    Google Scholar 

  88. R. Komanduri, N. Chandrasekaran, L. M. Raff: Molecular dynamics simulation of atomic-scale friction, Phys. Rev. B 61, 14007–14019 (2000)

    CAS  Google Scholar 

  89. A. Buldum, C. Ciraci: Contact, nanoindentation and sliding friction, Phys. Rev. B 57, 2468–2476 (1998)

    CAS  Google Scholar 

  90. T. H. Fang, C. I. Weng, J. G. Chang: Molecular dynamics simulation of a nanolithography process using atomic force microscopy, Surf. Sci. 501, 138–147 (2002)

    CAS  Google Scholar 

  91. B. Gotsmann, C. Seidel, B. Anczykowski, H. Fuchs: Conservative and dissipative tip–sample interaction forces probed with dynamic AFM, Phys. Rev. B 60, 11051–11061 (1999)

    CAS  Google Scholar 

  92. C. Loppacher, R. Bennewitz, O. Pfeiffer, M. Guggisberg, M. Bammerlin, S. Schär, V. Barwich, A. Baratoff, E. Meyer: Experimental aspects of dissipation force microscopy, Phys. Rev. B 62, 13674–13679 (2000)

    CAS  Google Scholar 

  93. M. Gauthier, M. Tsukada: Theory of noncontact dissipation force microscopy, Phys. Rev. B 60, 11716–11722 (1999)

    CAS  Google Scholar 

  94. J. P. Aimé, R. Boisgard, L. Nony, G. Couturier: Nonlinear dynamic behavior of an oscillating tip-microlever system and contrast at the atomic scale, Phys. Rev. Lett. 82, 3388–3391 (1999)

    Google Scholar 

  95. W. Denk, D. W. Pohl: Local electrical dissipation imaged by scanning force microscopy, Appl. Phys. Lett. 59, 2171–2173 (1991)

    CAS  Google Scholar 

  96. S. Hirsekorn, U. Rabe, A. Boub, W. Arnold: On the contrast in eddy current microscopy using atomic force microscopes, Surf. Interf. Anal. 27, 474–481 (1999)

    CAS  Google Scholar 

  97. U. Dürig: Atomic-Scale Metal Adhesion. In: Forces in Scanning Probe Methods, NATO ASI, Ser. E, Vol. 286, ed. by H. J. Güntherodt, D. Anselmetti, E. Meyer (Kluwer, Dordrecht 1995) pp. 191–234

    Google Scholar 

  98. N. Sasaki, M. Tsukada: Effect of microscopic nonconservative process on noncontact atomic force microscopy, Jpn. J. Appl. Phys. 39, L1334–L1337 (2000)

    CAS  Google Scholar 

  99. B. Gotsmann, H. Fuchs: The measurement of hysteretic forces by dynamic AFM, Appl. Phys. A 72, 55–58 (2001)

    Google Scholar 

  100. M. Guggisberg, M. Bammerlin, A. Baratoff, R. Lüthi, C. Loppacher, F. M. Battiston, J. Lü, R. Bennewitz, E. Meyer, H. J. Güntherodt: Dynamic force microscopy across steps on the Si(111)-(7 × 7) surface, Surf. Sci. 461, 255–265 (2000)

    CAS  Google Scholar 

  101. R. Bennewitz, S. Schär, V. Barwich, O. Pfeiffer, E. Meyer, F. Krok, B. Such, J. Kolodzej, M. Szymonski: Atomic-resolution images of radiation damage in KBr, Surf. Sci. 474, 197–202 (2001)

    Google Scholar 

  102. T. D. Stowe, T. W. Kenny, J. Thomson, D. Rugar: Silicon dopant imaging by dissipation force microscopy, Appl. Phys. Lett. 75, 2785–2787 (1999)

    CAS  Google Scholar 

  103. B. C. Stipe, H. J. Mamin, T. D. Stowe, T. W. Kenny, D. Rugar: Noncontact friction and force fluctuations between closely spaced bodies, Phys. Rev. Lett. 87, 96801 (2001)

    CAS  Google Scholar 

  104. B. Gotsmann, H. Fuchs: Dynamic force spectroscopy of conservative and dissipative forces in an Al-Au(111) tip–sample system, Phys. Rev. Lett. 86, 2597–2600 (2001)

    CAS  Google Scholar 

  105. B. N. J. Persson, A. I. Volokitin: Comment on “Brownian motion of microscopic solids under the action of fluctuating electromagnetic fields”, Phys. Rev. Lett. 84, 3504 (2000)

    CAS  Google Scholar 

  106. K. Yamanaka, A. Noguchi, T. Tsuji, T. Koike, T. Goto: Quantitative material characterization by ultrasonic AFM, Surf. Interf. Anal. 27, 600–606 (1999)

    CAS  Google Scholar 

  107. T. Drobek, R. W. Stark, W. M. Heckl: Determination of shear stiffness based on thermal noise analysis in atomic force microscopy: Passive overtone microscopy, Phys. Rev. B 64, 045401 (2001)

    Google Scholar 

  108. T. Kawagishi, A. Kato, Y. Hoshi, H. Kawakatsu: Mapping of lateral vibration of the tip in atomic force microscopy at the torsional resonance of the cantilever, Ultramicroscopy 91, 37–48 (2002)

    CAS  Google Scholar 

  109. F. J. Giessibl, M. Herz, J. Mannhart: Friction traced to the single atom, Proc. Natl. Acad. Sci. USA 99, 12006–12010 (2002)

    CAS  Google Scholar 

  110. H.-J. Hug, A. Baratoff: Measurement of dissipation induced by tip–sample interactions. In: Noncontact Atomic Force Microscopy, ed. by S. Morita, R. Wiesendanger, E. Meyer (Springer, Berlin, Heidelberg 2002) p. 395

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Enrico Gnecco Dr. , Roland Bennewitz Dr. , Oliver Pfeiffer , Anisoara Socoliuc or Ernst Meyer Prof. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag

About this entry

Cite this entry

Gnecco, E., Bennewitz, R., Pfeiffer, O., Socoliuc, A., Meyer, E. (2007). Friction and Wear on the Atomic Scale. In: Bhushan, B. (eds) Springer Handbook of Nanotechnology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-29857-1_33

Download citation

Publish with us

Policies and ethics