Skip to main content

Coupling Problems in Microelectronic Device Simulation

  • Chapter
Numerical Treatment of Coupled Systems

Part of the book series: Notes on Numerical Fluid Mechanics (NNFM) ((NONUFM,volume 51))

Abstract

The cost-effective design of electronic microstructures requires an advanced modeling and coupled simulation of various physical effects. The classical isothermal approach leads to the basic drift-diffusion model for semiconductor device simulation. In the stationary case, it represents a coupled nonlinear system consisting of a Poisson equation for the electric potential and two continuity equations for the electron and hole flow. We discuss various discretization schemes with special emphasis on mixed finite element methods and we further address efficient numerical solution techniques including adaptive multilevel methods. Finally, to allow for ambient conditions such as external magnetic fields we consider consistent extensions of the classical model and discuss perspectives for their numerical treatment.

The first and third author were supported by FORTWIHR, Bavarian Consortium for High Performance Scientific Computing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.N. Arnold and F. Brezzi, Mixed and nonconforming finite element methods: implementation, post-processing and error estimates. M 2 AN Math. Modelling Numer. Anal. 19, 7–35 (1985).

    MathSciNet  MATH  Google Scholar 

  2. B. Bachmann, Adaptive Mehrgitterverfahren zur Lösung der stationären Halbleitergleichungen. Dissertation, Universität Zürich (1993).

    Google Scholar 

  3. B.R. Baliga and S.V. Patankar, A new finite-element formulation for convection-diffusion problems. Numer. Heat Transfer 3, 393–409 (1980).

    Google Scholar 

  4. R. Bank, J.F. Bürgler, W. Fichtner and R.K. Smith, Some upwinding techniques for finite element approximations of convection-diffusion equations. Numer. Math. 58, 185–202 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  5. F. Bornemann, B. Erdmann and Kornhuber, Adaptive multilevel methods in three space dimensions. Int. J. Numer. Methods Eng. 36, 3187–3203 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  6. D. Braess and R. Verfürth, Multigrid methods for nonconforming finite element methods. SIAM J. Numer. Anal. 27, No. 4, 979–986 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  7. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer, BerlinHeidelberg-New York, 1991.

    Book  MATH  Google Scholar 

  8. F. Brezzi, L.D. Marini and P. Pietra, Two dimensional exponential fitting and application to drift-diffusion models. SIAM J. Numer. Anal. 26, 1347–1355 (1989).

    Article  MathSciNet  Google Scholar 

  9. F. Brezzi, L.D. Marini and P. Pietra, Numerical simulation of semiconductor devices. Comp. Math. Appl. Mech. Eng. 75, 493–514 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  10. J.F. Bürgler, Discretization and Grid Adaption in Semiconductor Device Modeling. Hartung-Gorre, Konstanz, 1990.

    Google Scholar 

  11. B. Fraeijs de Veubeke, Displacement and equilibrium models in the finite element method. In: Stress Analysis, C. Zienkiewicz and G. Holister (eds.), John Wiley and Sons, New York, 1965.

    Google Scholar 

  12. H. Gajewski and K. Gröger, Semiconductor equations for mobilities based on Boltzmann statistics or Fermi-Dirac statistics. Math. Nachr. 140, 7–36 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  13. H. Gajewski and K. Gärtner, On the discretization of van Roosbroeck’s equations with magnetic field. ETH Zürich, Integrated Systems Laboratory, Techn. Rep. No. 94 /14 (1994).

    Google Scholar 

  14. P.W.H. Hemker and H. Molenaar, A multigrid approach for the solution of the 2D semiconductor equations. IMPACT Comput. Sci. Engrg. 2, 219–243 (1990).

    Article  MATH  Google Scholar 

  15. R. Hiptmair, Gemischte Finite-Elemente-Diskretisierung der Kontinuitätsgleichungen aus der Bauelementsimulation. Master Thesis, Technische Universität München, 1992.

    Google Scholar 

  16. R. Hiptmair and R. H. W. Hoppe, Mixed finite element discretization of continuity equations arising in semiconductor device simulation. In: Proc. Conf. Math. Modelling and Simulation of Electrical Circuits and Devices, R.E. Bank et al. (eds.), p. 197–217 Birkhäuser, Basel, 1994.

    Chapter  Google Scholar 

  17. R.H.W. Hoppe and B. Wohlmuth, Adaptive multilevel techniques for mixed finite element discretizations of elliptic boundary value problems. Submitted to SIAM J. Numer. Anal..

    Google Scholar 

  18. R.H.W. Hoppe and B. Wohlmuth, Efficient Numerical Solution of Mixed Finite Element Discretizations by Adaptive Multilevel Methods. to appear in Apl. Mat..

    Google Scholar 

  19. W. Kampowsky, P. Rentrop and W. Schmidt, Classification and numerical simulation of electric circuits. Surv. Math. Ind. 2, 23–65 (1992).

    MathSciNet  MATH  Google Scholar 

  20. P.A. Markowich, Chr.A. Ringhofer and Chr. Schmeiser, Semiconductor Equations. Springer, Berlin-Heidelberg-New York, 1990.

    Book  MATH  Google Scholar 

  21. F. Montrone, The method of Baliga-Patankar in 3D device simulation. In: Proc. Conf. Math. Modelling and Simulation of Electrical Circuits and Devices, R.E. Bank et al. (eds.), p. 251–265 Birkhäuser, Basel, 1994

    Chapter  Google Scholar 

  22. R.R.P. van Nooyen, Some aspects of mixed finite element methods for semiconductor simulation. Ph.D. Thesis, University of Amsterdam, 1992.

    Google Scholar 

  23. M. Paffrath, W. Jacobs, W. Klein, E. Rank, K. Steger, U. Weinert and U. Weyer, Concepts and algorithms in process simulation. Surv. Math. Ind. 3, 149–183 (1993).

    MATH  Google Scholar 

  24. A. Reusken, Multigrid applied to mixed finite elements schemes for current continuity equations. Preprint, Technical University Eindhoven (1990).

    Google Scholar 

  25. C. Riccobene, G. Wachutka, J.F. Bürgler and H. Baltes, Two-dimensional numerical modeling of dual-collector magnetotransistors: evidence for emitter efficiency modulation. Sensors and Actuators A, 31, 210–214 (1992).

    Article  Google Scholar 

  26. C. Riccobene, G. Wachutka, J.F. Bürgler and H. Baltes, Operating principle of dual collector magnetotransistors studied by two-dimensional simulation. IEEE Trans. Electron Devices ED-41, 32–43 (1994).

    Article  Google Scholar 

  27. D.L. Scharfetter and H.K. Gummel, Large-signal analysis of a silicon read diode oscillator. IEEE Trans Electron Devices ED-16, 64–77 (1969).

    Article  Google Scholar 

  28. S. Selberherr, Analysis and Simulation of Semiconductor Devices. Springer, BerlinHeidelberg-New York, 1984.

    Book  Google Scholar 

  29. N. Shigyo, T. Wada and S. Yasuda, Discretization problem for multidimensional current flow. IEEE Trans. CAD, CAD-8, 1046–1050 (1989).

    Google Scholar 

  30. G. Wachutka, Unified framework fir thermal, electrical, magnetic and optical semiconductor device modeling. COMPEL 10, 311–321 (1991).

    Google Scholar 

  31. G. Wachutka, Problem-oriented modeling of microtransducers: state of the art and future challenges. Sensors and Actuators A, 41–42, 279–283 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden

About this chapter

Cite this chapter

Hiptmair, R., Hoppe, R.H.W., Wohlmuth, B. (1995). Coupling Problems in Microelectronic Device Simulation. In: Hackbusch, W., Wittum, G. (eds) Numerical Treatment of Coupled Systems. Notes on Numerical Fluid Mechanics (NNFM), vol 51. Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-322-86859-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-86859-6_8

  • Publisher Name: Vieweg+Teubner Verlag

  • Print ISBN: 978-3-322-86861-9

  • Online ISBN: 978-3-322-86859-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics