Skip to main content
Log in

Some upwinding techniques for finite element approximations of convection-diffusion equations

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary

A uniform framework for the study of upwinding schemes is developed. The standard finite element Galerkin discretization is chosen as the reference discretization, and differences between other discretization schemes and the reference are written as artificial diffusion terms. These artificial diffusion terms are spanned by a four dimensional space of element diffusion matrices. Three basis matrices are symmetric, rank one diffusion operators associated with the edges of the triangle; the fourth basis matrix is skew symmetric and is associated with a rotation by ϕ/2. While finite volume discretizations may be written as upwinded Galerkin methods, the converse does not appear to be true. Our approach is used to examine several upwinding schemes, including the streamline diffusion method, the box method, the Scharfetter-Gummel discretization, and a divergence-free scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bank, R.E., Rose, D.J.: Some error estimates for the box method. SIAM J. Numer. Anal.24, 777–787 (1987)

    Google Scholar 

  2. Bank, R.E., Rose, D.J., Fichtner, W.: Numerical methods for semiconductor device simulations. IEEE Trans. Electr. Dev., ED-30, 1031–1041 (1983)

    Google Scholar 

  3. Bürgler, J.F., Bank, R.E., Fichtner, W., Smith, R.K.: A new discretization for the semiconductor continuity equations. IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems8, 479–489 (1989)

    Google Scholar 

  4. Caussignac, P., Touzani, R.: Linear conforming and nonconforming upwind finite elements for the convection-diffusion equation. IMA J. Numer. Anal.8, 85–103 (1988)

    Google Scholar 

  5. Hughes, T.J.R., Brooks, A.: Streamline-upwind Petrov-Galerkin formulations for convective dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng.32, 199–259 (1982)

    Google Scholar 

  6. Hughes, T.J.R., Brooks, A.: A theoretical framework for Petrov-Galerkin methods with discontinuous weighting functions: Application to the streamline upwind procedure. In: Gallagher, R.H., Norrie, D.H., Oden, J.T., Zienkiewicz, O.C. (eds.) Finite elements in fluids, Vol. 4, pp 47–66 New York: Wiley 1984

    Google Scholar 

  7. Ikeda, T.: Maximum principle in finite element models for convection-diffusion phenomena. North-Holland Mathematics Studies, Vol. 76, (Lecture Notes in Numerical and Applied Analysis, Vol. 4). Amsterdam: North-Holland 1983

    Google Scholar 

  8. Johnson, C., Navert, U., Pitkaranta, J.: Finite element methods for linear hyperbolic problems. Comput. Methods Appl. Mech. Eng.45, 285–312 (1984)

    Google Scholar 

  9. Ohmori, K., Ushijima, T.: A technique of upstream type applied to a linear conforming finite element approximation of convection-diffusion equations. RAIRO Anal. Numer.18, 309–332 (1984)

    Google Scholar 

  10. Strang, G., Fix, G.: An Analysis of the finite element method. Prentice-Hall, Englewood Cliffs, New Jersey 1973

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The work of this author was supported by the Office of Naval Research under contract N00014-89J-1440

The work of this author was supported through KWF-Landis/Gyr Grant 1496, AT & T Bell Laboratories, and Cray Research

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bank, R.E., Bürgler, J.F., Fichtner, W. et al. Some upwinding techniques for finite element approximations of convection-diffusion equations. Numer. Math. 58, 185–202 (1990). https://doi.org/10.1007/BF01385618

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01385618

Subject classifications

Navigation