Skip to main content

Part of the book series: Chromatographia CE Series ((CHROM,volume 6))

Abstract

Cyclodextrins are the most popular of the many chiral selectors used in CE because they have many of the desirable features of the ideal chiral selector. Cyclodextrins are used in about two thirds of the literature applications of CE for the separation of enantiomers [1]. Cyclodextrins show good enantioselectivity for a wide range of analytes, are transparent to UV light down to low wavelengths, and have good water solubility. Cyclodextrins are available in a range of sizes and chemistries, usually give fast kinetics for the formation and breakdown of complexes with enantiomers, and are relatively cheap. Cyclodextrins were amongst the first chiral selectors employed in CE and their successful application has followed their use as chiral stationary phases in GC, TLC, and HPLC, and as mobile phase additives in TLC and HPLC. Most early workers used the parent α, β, and γ-cyclodextrins but most interest has now shifted to the substituted cyclodextrin derivatives, particularly those of β-cyclodextrin. Charged cyclodextrins are rapidly growing in popularity with anionic derivatives such as various sulphonated β-cyclodextrin being the most widely used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gübitz, G.; Schmid, M.G. Chiral separation principles in capillary electrophoresis, J. Chromatogr. A. 1997, 792, 179–225.

    Article  Google Scholar 

  2. Szejtli, J. Introduction and General Overview of Cyclodextrin Chemistry, Chem. Rev. 1998, 98,1743–1753

    Article  Google Scholar 

  3. Szejtli, J. Cyclodextrin Technology, Kluwer academic publishers, Dordrecht, 1988.

    Google Scholar 

  4. Loftsson, T.: Brewster, M. E. Cyclodextrins as Pharnraceutical Excipients, Pharm. Tech. Europe. 1997, 5, 26–34.

    Google Scholar 

  5. Wacker Chemie - private communication.

    Google Scholar 

  6. Taghvaei, M.; Stewart, G.H. 13-Cyclodextrin Solubility in Reversed-Phase High-Performance Liquid Chromatographic Eluents, Anal. Chem. 1991, 63, 1902 1904.

    Google Scholar 

  7. Chatjigakis, A.K.; Donzé, C.; Coleman, A.W.; Cardot, P. Solubility Behaviour of β-Cyclodextrin in Water/Cosolvent Mixtures, Anal. Chem. 1992, 64, 1632–1634.

    Article  Google Scholar 

  8. Pharr, D.Y.; Fu, Z.S.; Smith, T.K.; Hinze, W.L. Solubìlization of Cyclodextrins for analytical applications, Anal. Chem. 1989, 61,275-.279.

    Google Scholar 

  9. Yusuff, N.; York, P. Spironolactone-cyclodextrin complexes: phase solubility and ultrafiltration studies, lut. J. Phan,,. 1991, 73, 9–15.

    Google Scholar 

  10. Uekama, K.; Narisawa, S.; Hirayama, F.; Otagiri, M. Improvement of dissolution and absorption characteristics of benzodiazepines by cyclodextrin complexation, Int. J. Pharm. 1983, 16, 327–338.

    Article  Google Scholar 

  11. Inoue, Y.; Hakushi, T.; Liu, Y.; Tong, L.-H.; Shen, 13.-I.; Jin, D.-S. Thermodynamics of Molecular Recognition by Cyclodextrins. 1. Calorimetric Titration of Inclusion Complexation of Naphthalenesulfonates with a-, 3-, and ry-Cyclodextrins: Enthalpy-Entropy Compensation, J. Ain. Chenu. Soc. 1993, 115,475–481

    Google Scholar 

  12. Uekama, K.; Fujinaga, T.; Hirayama, F.; Otagiri, M.; Yamasaki, M. Inclusion complexations of steroid hormones with cyclodextrins in water and in solid phase, Gu. J. Pharm. 1982, 10, 1–15

    Google Scholar 

  13. Czugler, M.; Eckle, E.; Stezowski, J. Crystal and Molecular Structure of a 2.6-Tetradeca-O-methyl-13-cyclodextrin–Adamantol 1:1 Inclusion Complex. J.C.S. Chem. COMM. 1981, 1291–1292.

    Google Scholar 

  14. Greatbanks, D.; Pickford, R. Cyclodextrins as Chiral Complexing Agents in Water, and their Application to Optical Purity Measurements. Magn. Reson. in Chem. 1987, 25, 208–215.

    Article  Google Scholar 

  15. Li, S.; Purdy, W.C. Circular Dichoism, Ultraviolet, and Proton Nuclear Magnetic Resonance Spectroscopic Studies of the Chiral Recognition Mechanism of 13-cy-clodextrin, Anal. Chem. 1992, 64, 1405 1412.

    Google Scholar 

  16. Chankvetadze, B.; Schulte. G.; Bergenthal, D.; Blaschke, G. Comparative capillary electrophoresis and NMR studies of enantioseparation of dimethindene with cyclodextrins, J. Chromatogr. A. 1998, 798, 315–323.

    Article  Google Scholar 

  17. Valkó, I.E.; Billiet, H.A.H.; Frank, J.; Luyben, K.Ch.A.M. Factors Affecting the Separation of Mandelic Acid Enantiomers by Capillary Electrophoresis, Chromatographia 1994, 38, 730–736.

    Article  Google Scholar 

  18. Ferguson, P.D.; Goodall, D.M.; Loran, J.S Systematic approach to the treatment of enantiomeric separations in capillary electrophoresis and liquid chromatography III. A binding constant-retention factor relationship and effects of acetonitrile on the chiral separation of tioconazole, J. Chromatogr. A 1996, 745, 25–35.

    Article  Google Scholar 

  19. Gratz, S.R.; Stalcup, A.M. Enantiomeric Separations of Terbutaline by CE with a Sulfated ß-Cyclodextrin Chiral Selector: A Quantitative Binding Study. Ares!. Chem. 1998, 70, 5166–5171.

    Article  Google Scholar 

  20. Reijenga, J.C.; Ingelse, B.A.; Everaerts, F.M. Thermodynamics of chiral selectivity in capillary electrophoresis: separation of ibuprofen enantiomers with ß-cyclodextrin, J. Chromatogr. A 1997, 792, 37 1378.

    Google Scholar 

  21. Ma, S.; Horvâth, C. Capillary zone electrophoresis at subzero temperature II: Chiral separation of biogenic amines, Electrophoresis 1997, 18, 873–883.

    Article  Google Scholar 

  22. Rawjee, Y.Y.; Staerk, D.U.; Vigh, G. Capillary electrophoretic chiral separations with cyclodextrin additives. I. Acids: chiral selectivity as a function of pH and the concentration of ß-cyclodextrin for fenoprofen and ibuprofen, J. Chromatogr 1993, 635, 291–306.

    Article  Google Scholar 

  23. Beesley, T.E.; Scott, R.P.W. Chiral Chromatography, J. Wiley and Sons, New York, 1998.

    Google Scholar 

  24. Zuowski, J.; Sybilska, D.; Bojarski, J. Applications of a-and ß-cyclodextrin and heptakis(2, 6-di-O-methyl)-ß-cyclodextrin as mobile phase components for the separation of some chiral barbiturates into enantiomers by reversed-phase high-performance liquid chromatography, J. Chromatogr. 1986, 364, 225–232.

    Google Scholar 

  25. Horvâth, Cs.; Melander, W.: Nahum, A. Measurement of association constants for complexes by reversed-phase high-performance liquid chromatography, J. Chromatogr. 1979, 186, 371–403.

    Article  Google Scholar 

  26. Mayer, S.; Schleimer, M.; Schurig, V. Dual Chiral Recognition System Involving Cyclodextrin Derivatives in Capillary Electrophoresis, J. Microcol. Sep. 1994, 6, 43–48.

    Article  Google Scholar 

  27. Schmitt, T.; Engelhardt, H. Derivatised Cyclodextrins for the Separation of Enantiomers in Capillary Electrophoresis, J. High Resolut. Chromatogr. 1993, 16, 525–529.

    Article  Google Scholar 

  28. Yoshinaga, M.; Tanaka, M. Use of selectively methylated ß-cyclodextrin derivatives in chiral separation of dansylamino acids by capillary zone electrophoresis, J. Chromatogr. A 1994. 679, 359–365.

    Article  Google Scholar 

  29. Aturki, Z.; Desiderio, C.; Manning, L.; Fanali, S. Chiral separations by capillary zone electrophoresis with the use of cyanethylated-f3-cyclodextrin as chiral selector, J. Chromatogr. A 1998, 817, 91–104.

    Article  Google Scholar 

  30. Chankvetadze, B.; Schulte, G.; Blashke, G. Reversal of enantiomer order in capillary electrophoresis using charged and neutral cyclodextrins, J. Chromatogr. A 1996, 732, 183–187.

    Article  Google Scholar 

  31. Andrisano, V.; Gotti, R.; Cavrini, V.; Tumiatti, V.; Felix, G.; Wainer, I.W. Capillary electrophoretic and high-performance liquid chromatographic studies of the enantioselective separation of at-adrenoreceptor antagonists, J. Chromatogr. A 1998, 803, 189–195.

    Article  Google Scholar 

  32. Bechet, I.; Paques, P.; Fillet, M.; Hubert, P.; Crommen, J. Chiral separation of basic drugs by capillary zone electrophoresis with cyclodextrins additives, Electrophoresis 1994, 15, 818–823.

    Article  Google Scholar 

  33. A. Guttman, S. Brunet, N. Cooke, Capillary Electrophoresis Separation of Enantiomers Using Cyclodextrin Array Chiral Analysis., LC-GC Intl. February 1996, 88–100.

    Google Scholar 

  34. Liu, L.; Nussbaum, M.A. Systematic screening approach for chiral separations of basic compounds by capillary electrophoresis with modified cyclodextrins, J. Pharm. Biomed. Anal. 1999, 19, 679–694.

    Article  Google Scholar 

  35. lin, B.; Zhu, X.; Koppenhoefer, B.; Epperlein, U. Investigation of 123 Chiral Drugs by Cyclodextrin-Modified Capillary Electrophoresis, LC-GC Intl. January 1997, 40–46.

    Google Scholar 

  36. Wren, S.A.C. Chiral separation in capillary electrophoresis, Electrophoresis 1995, 16,2127–2131

    Google Scholar 

  37. Schmitt, T.; Engelhardt, H. Charged and Uncharged Cyclodextrins as Chiral Selectors in Capillary Electrophoresis, Chromatographia 1993, 37, 475–481.

    Article  Google Scholar 

  38. Juvancz. Z.; Jicsinsky, L.; Markides, K.E. Phosphated Cyclodextrins as New Acidic Chiral Additives for Capillary Electrophoresis., J. Microcol. Sep. 1997, 9, 58 1589.

    Google Scholar 

  39. Juvancz, Z.; Markides, K.E.; Jicsinskv, L. Chiral Analysis of Metoprolol and Its By-Products by Capillary Electrophoresis, J. Microcol. Sep. 1999, 11, 716–722.

    Article  Google Scholar 

  40. Tait, R.J.; Thompson, D.O.; Stella, V.J.; Stobaugh, J.F. Sulfobutyl Ether ß-Cyclodextrin as a Chiral Discriminator for Use with Capillary Electrophoresis, Anal. Chem. 1994, 66, 4013–4018.

    Article  Google Scholar 

  41. Desiderio, C.; Fanali, S. Use of negatively charged sulfobutyl ether-ß-cyclodextrin for enantiomeric separation by capillary electrophoresis, J. Chromatogr. A. 1995, 7/6,183–196.

    Google Scholar 

  42. Vargas, M.G.; Vander Heyden, Y.; Maftouh, M.; Massart, D.L. Rapid development of the enantiomeric separation of 3blockers by capillary electrophoresis using an experimental design approach, J. Chromatogr. A. 1999, 855, 681–693.

    Article  Google Scholar 

  43. Rickard, E.C.; Bopp, R.J.; Skanchy, D.J.; Chetwyn, K.L.; Pahlen, B.; Stobaugh, J.F. Role of Capillary Electrophoresis Methods in the Drug Development Process, Chiro/ity 1996, 8, 108–121.

    Google Scholar 

  44. Francotte, E.; Brandel, L.: Jung, M. Influence of the degree of substitution of cyclodextrin sulphobutyl ether derivatives on enantioselective separations by electrokinetic chromatography, J. Chromatogr. A. 1997, 792, 379–384.

    Article  Google Scholar 

  45. Stalcup, A.M.; Gahm, K.H. Application of Sulfated Cyclodextrins to Chiral Separations by Capillary Zone Electrophoresis, Anal Chem. 1996, 68, 1360–1368.

    Article  Google Scholar 

  46. Vincent, J.B.; Sokolowski, A.D.; Nguyen, T.V.; Vigh, G. A Family of Single-Isomer Chiral Resolving Agents for Capillary Electrophoresis. I. Heptakis (2,3-diacetyl6-sulfato)-13-cyclodextrin, Anal. Chem. 1997, 69, 4226–4233.

    Article  Google Scholar 

  47. Vincent, J.B.; Kirby, D.M.; Nguyen, T.V.; Vigil, G. A Family of Single-Isomer Chiral Resolving Agents for Capillary Electrophoresis. 2. Hepta-6-sulfato-ß-cyclodextrin, Anal. Cheat. 1997, 69, 4419–4428.

    Article  Google Scholar 

  48. Cai, H.; Nguyen, T.V.; Vigh, G. A Family of Single-Isomer Chiral Resolving Agents for Capillary Electrophoresis. 3. Heptakis (2,3-dimethyl-6-sulfato)-.3-cyclodextrin, Anal. Chem 1998, 70, 580–589

    Google Scholar 

  49. Zhu, W.; Vigh, G. Capillary Electrophoretie Separation of the Enantiomers of Weak Acids in a High pH Background Electrolyte Using the New, Single-Isomer, Octakis(2,3-diacetyl-6-sulfato)-ry-cyclodextrin as Chiral Resolving Agent. J. Mi. crocol. Sep. 2000, 12, 167–171.

    Article  Google Scholar 

  50. Nardi, A.; Eliseev, A.; Bocek, P.; Fanali, S. Use of charged and neutral cyclodextrins in capillary zone electrophoresis: enantiomeric resolution of some 2-hydroxy acids, J. Chromatogr. 1993, 638,247253.

    Google Scholar 

  51. Haynes, J.L.; Shami, S.A.; O’Keefe, F.; Darcey, R.; Warner, I.M. Cationic (J-cyclodextrin derivative for chiral separations, J. Chromatogr. A 1998, 803, 26 1271.

    Google Scholar 

  52. Schulte, G.; Chankvetadze, B.; Blaschke, G. Enantioseparation in capillary electrophoresis using 2-hydroxypropyltrimethylammonium salt of 3-cyclodextrin as a chiral selector, J. Chromatogr. A 1997, 771, 259–266.

    Article  Google Scholar 

  53. Jakubetz, H.; Jun, M.; Schurig, V. Electrokinetic chromatography employing an anionic and a cationic 3-cyclodextrin derivative, Electrophoresis 1997, 18, 897–904.

    Article  Google Scholar 

  54. Bunke, A.; Jira, T. Use of cationic cyclodextrin for enantioseparation by capillary electrophoresis, J. Chromatogr. A 1998, 798, 275–280.

    Article  Google Scholar 

  55. Galaverna, G.; Corradini, R.; Dossena, A.; Marchetti, R.; Vecchio, G. Histamine-modified ß-cyclodextrins for the enantiomeric separation of dansyl-amino acids in capillary electrophoresis, Electrophoresis 1997, 18, 905–911.

    Article  Google Scholar 

  56. Lelièvre, F.; Gueit, C.; Gareil, P.; Bahaddi, Y.; Galons, H. Use of zwitterionic cyclodextrin as a chiral agent for the separation of enantiomers by capillary electrophoresis, Electrophoresis 1997. 18, 89 1896.

    Google Scholar 

  57. Nishi, H.; Fukuyama, T.: Terabe, S. Chiral separation by cyclodextrin-modified micellar electrokinetic chromatography, J. Chromatogr. 1991, 553, 503–516.

    Article  Google Scholar 

  58. Schmid, M.G.; Wirnsberger, K.; lira, T.; Bunke, A.; Gühitz, G. Capillary Electrophoretic Chiral Resolution of Vicinal Diols by Complexation With Borate and Cyclodextrin: Comparative Studies on Different Cyclodextrin Derivatives, Chi, ality 1997, 9, 153–156.

    Google Scholar 

  59. Billiot, E.; Wang, J.; Warner, I.M. Improved chiral separation using achiral modifiers in cyclodextrin modified capillary zone electrophoresis, J. Chromatogr. A 1997, 773,321–329

    Google Scholar 

  60. Okafo, G.N.; Bintz, C.; Clark, S.E.; Camilleri, P. Micellar Electrokinetic Chromatography in a Mixture of Taurodeoxycholic Acid and ß-Cyclodextrin, J. Chem. Soc. Chem. Corn. 1992, 1189–1192.

    Google Scholar 

  61. Cooper, A.; Nutley, M.A.; Camilleri, P. Microcalorimetry of Chiral SurfactantCyclodextrin Interactions, Anal. Chen. 1998, 70, 5024–5028.

    Article  Google Scholar 

  62. Zhou, L.; Trubig, J.: Dovletoglu, A.; Locke, D.C. Enantiomeric separation of the novel growth hormone secretagogue MK-0677 by capillary zone electrophoresis, J. Chromatogr. A 1997, 773, 31 1320.

    Google Scholar 

  63. lira, T.; Bunke, A.; Karbaum, A. Use of chiral and achiral ion-pairing reagents in combination with cyclodextrins in capillary electrophoresis, J. Chromatogr. A 1998, 798, 281–288.

    Article  Google Scholar 

  64. Fillet, M.; Hubert, P.; Crommen, J. Enantioseparation of nonsteroidal anti-inflammatory drugs by capillary electrophoresis using mixtures of anionic and uncharged 13-cyclodextrins as chiral additives, Electrophoresis 1997, 18, 1013–1018.

    Article  Google Scholar 

  65. Fillet, M.; Fotsing, L.; Crommen, J. Enantioseparation of uncharged compounds by capillary electrophoresis using mixtures of anionic and neutral β-cyclodextrin derivatives, J. Chromatogr. A 1998, 817,113119.

    Google Scholar 

  66. Rudaz, S.; Veuthey, J.-L.; Desiderio, C.; Fanali, S. Enantioseparation of Venlafaxine and O-Desmethylvenlafaxine by Capillary Electrophoresis with Mixed Cyclodextrins, Chromatographic 1999, 50, 369–372.

    Article  Google Scholar 

  67. Rudaz, S.; Cherkaoui, S.; Dayer, P.; Fanali, S.; Veuthey, J.-L. Simultaneous stereo-selective analysis of tramadol and its main phase I metabolites by on-line capillary zone electrophoresis-electrospray ionization mass spectrometry. J. Chromatogr. A 2000, 868, 295–303.

    Article  Google Scholar 

  68. Lanz, M.; Brenneisen, R.; Thormann, W. Enantioselective determination of 3,4-methylenedioxymethamphetamine and two of its metabolites in human urine by cyclodextrin-modified capillary zone electrophoresis, Electrophoresis 1997, 18, 1035 1043.

    Google Scholar 

  69. Silverman, C. Chiral separations by capillary electrophoresis in process chemistry, J. Cap. Elec. 1997, 4, 181–187.

    Google Scholar 

  70. Lurie, I.S.; Klein, R.F.X.; Dal Cason, T.A.; LeBelle, M.J.; Brenneisen, R.; Weinberger, R.E. Chiral Resolution of Cationic Drugs of Forensic Interest by Capillary Electrophoresis with Mixtures of Neutral and Anionic Cyclodextrins, Anal. Chem. 1994, 66, 4019–4026.

    Article  Google Scholar 

  71. Greenaway, M.; Okafo. G.N.; Camilleri, P.; Dhanak, D. A Sensitive and Selective Method for the Analysis of Complex mixtures of Sugars and Linear Oligosaccharides, J. Chem. Soc. Chem. Comm.. 1994, 1691–1692.

    Google Scholar 

  72. Skanchy, D.J.; Wilson, R.; Poh, T.; Xie, Demarest, C.W.; Stobaugh, J.F. Resolution of acylated dipeptide stereo-isomers by capillary electrophoresis using sulfobutylether derivatized 3cyclodextrin, Electrophoresis 1997, 18, 985–995.

    Article  Google Scholar 

  73. Verteysen, K.; Sabah, S.: Scriba, G.; Chen, A.; Sandra, P. Evaluation of the enantioselective possibilities of sulfated cyclodextrins for the separation of aspartyl di-and tripeptides in capillary electrophoresis, J. Chromatogr. A 1998, 824. 91–97.

    Article  Google Scholar 

  74. Fanali, S.; Flieger, M.; Steinerova, N.; Nardi, A. Use of cyclodextrins for the enantioselective separation of ergot alkaloids by capillary zone electrophoresis, Electrophoresis 1992, 13, 39–43.

    Article  Google Scholar 

  75. Tahara, S.; Okayama, A.; Kitada, Y.; Watanabe, T.; Nakazawa, H.; Kakehi, K.; Hisamatu, Y. Enantiomeric separation of atropine in Scopolia extract and Scopolia Rhizome by capillary electrophoresis using cyclodextrins as chiral selectors, J. Chromatogr. A 1999, 848, 465–471.

    Article  Google Scholar 

  76. Mateus, L.; Cherkaoui, S.; Christen, P.; Veuthey, 1.-L. Enantioseparation of atropine by capillary electrophoresis using sulfated ß-cyclodextrin: application to a plant extract, J. Chromatogr. A 2000, 868, 285–294.

    Article  Google Scholar 

  77. Garrison, A.W.; Schmitt, P.; Kettrup, A. Separation of phenoxy herbicides and their enantiomers by high-performance capillary electrophoresis, J. Chronmtogr. A 1994, 688, 317–327.

    Article  Google Scholar 

  78. Hadley, M.R.; Gabriac, S.D.; Hutt, A.J. Resolution of Enantiomeric N-Oxides by Capillary Electrophoresis using Cyclodextrins as Chiral Selectors, Chirality 1999, /1,409–415.

    Google Scholar 

  79. Valenzuela, F.A.; Green, T.K.; Dahl, D.B. Enantiomeric Separation of Sulfonium Ions by Capillary Electrophoresis Using Neutral and Charged Cyclodextrins, Anal. Chen. 1998, 70, 3612–3618.

    Article  Google Scholar 

  80. Crego, A.L.; Garcia, M.A.; Marina, M.L. Enantiomeric Separation of Chiral Polychlorinated Biphenyls by Micellar Electrokinetic Chromatography Using Mixtures of Bile Salts and Sodium Dodecyl Sulphate with and without y-Cyclodextrin in the Separation Buffer, J. Mícrocol. Sep. 2000, 12, 33–40.

    Article  Google Scholar 

  81. Szemin, J.; Roos, N.; Csabai, K. Ruggedness of enantiomeric separation by capillary electrophoresis and high-performance liquid chromatography with methylated cyclodextrins as chiral selectors, J. Chromatogr. A 1997, 763, 139–147.

    Article  Google Scholar 

  82. Otsuka, K.; Honda, S.; Kato, J.; Terâbe, S.; Kimata, K.; Tanaka, N. Effects of compositions of dimethyl-13-cyclodextrins on enantiomer separations by cyclodextrin modified capillary zone electrophoresis, J. Pharm. Biomed. Anal. 1998, 17. 1177–1190.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH

About this chapter

Cite this chapter

Wren, S. et al. (2001). The Use of Cyclodextrins as Chiral Selectors. In: Berger, T.A., et al. The Separation of Enantiomers by Capillary Electrophoresis. Chromatographia CE Series, vol 6. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-322-83141-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-83141-5_5

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-322-83143-9

  • Online ISBN: 978-3-322-83141-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics