Skip to main content

Role of Microbes in Sustainable Agriculture

  • Chapter
  • First Online:
Natural Resource Management: Ecological Perspectives

Part of the book series: Sustainability in Plant and Crop Protection ((SUPP))

Abstract

Agriculturists have multifaceted challenges as natural resources are constantly shrinking, available resources are becoming worse everyday, pathogens are evolving fast, and expectations of consumers are progressively increasing. Recent technical developments in agriculture saw an increased use of chemicals affecting the microbial ecosystem, whereby soil rapidly loses vitality. Existing technologies have reached a plateau, and hitherto it is extremely difficult to further increase food production. Under these circumstances, sustainability in crop productions cannot be attained without the sustaining role of the microbial populations in soil. Microbes perform multiple functions of supplying nutrients; controlling diseases, insects, nematodes, and weeds; and recycling by waste degradation. The role of microbes in sustainable agriculture is discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AEFB:

Aerobic endospore-forming bacteria

BNF:

Biological nitrogen fixation

Bt:

Bacillus thuringiensis

C:N ratio:

Carbon/nitrogen ratio

FYM:

Farmyard manure

GV:

Granulosis virus

NPV:

Nuclear polyhedrosis virus

PGPR:

Plant growth-promoting rhizobacteria

PSB:

Phosphate-solubilizing bacteria

PSM:

Phosphate-solubilizing microorganisms

References

  • Agrios, G. N. (2005). Plant pathology (5th ed.). Burlington: Elsevier Academic.

    Google Scholar 

  • Alam, S., Khalil, S., Ayub, N., & Rashid, M. (2002). In vitro solubilization of inorganic phosphate by Phosphate Solubilizing Microorganism (PSM) from maize rhizosphere. International Journal of Agriculture and Biology, 4, 454–458.

    CAS  Google Scholar 

  • Anjum, M. A., Sajjad, M. R., Akhtar, N., Qureshi, M. A., Iqbal, A., Jami, A. R., & Hasan, M. (2007). Response of cotton to Plant Growth Promoting Rhizobacteria (PGPR) inoculation under different levels of nitrogen. Journal of Agricultural Research, 45, 135–143.

    Google Scholar 

  • Anonymous. (2017a). http://www.un.org/sustainabledevelopment/blog/2015/07/un-projects-world-population-to-reach-8-5-billion-by-2030-driven-by-growth-in-developing-countries/website. Accessed 30 Oct 2017.

  • Anonymous. (2017b). http://www.toxipedia.org/display/toxipedia/Effects+of+Pesticides+on+Human+Healthwebsite. Accessed 30 Oct 2017.

  • Balasubramanian, C., Udayasoorian, P., Prabhu, C., & Kumar, G. S. (2008). Enriched compost for yield and quality enhancement in sugarcane. Journal of Ecobiology, 22, 173–176.

    Google Scholar 

  • Barton, J. (2004). How good are we at predicting the field host-range of fungal pathogens used for classical biological control of weeds? Biological control: Theory and Applications in Pest Management, 31(1), 99–122.

    Article  Google Scholar 

  • Bouderau, M. A., & Andrews, J. H. (1987). Factors influencing antagonism of Chaetomium globosum to Venturia inaequalis: A case study in failed biocontrol. Phytopathohology, 77, 1470–1475.

    Article  Google Scholar 

  • Boyette, C. (2006). Adjuvants enhance the biological control potential of an isolate of Colletotrichum gloeosporioides for biological control of sicklepod (Senna obtusifolia). Biocontrol Science and Technology, 16(9–10), 1057–1066.

    Article  Google Scholar 

  • Burr, T. J., Caesar, A. M., & Schrolh, N. (1984). Beneficial plant bacteria: Critical review. Plant Science, 2, 1–20.

    Google Scholar 

  • Carisse, O., Philion, V., Rolland, D., & Bernier, J. (2000). Effect of fall application of fungal antagonists on spring ascospore production of the apple scab pathogen, Venturia inaequalis. Phytopathology, 90, 31–37.

    Article  CAS  Google Scholar 

  • Carruthers, R. I., & Soper, R. S. (1987). Fungal diseases. In J. R. Fuxa & Y. Tanada (Eds.), Epizootiology of insect diseases (pp. 357–416). New York: Wiley.

    Google Scholar 

  • Carsky, R. J., Becker, M., & Hauser, S. (2001). Mucuna cover crop fallow systems: Potential and limitations, In G. Tian, F. Ishida, & Keatinge (Eds.), Sustaining soil fertility in West Africa, (Special Publication No 58). Madison: Soil Science Society of America.

    Google Scholar 

  • Chandra, K., & Greep, S. (2006). Potash mobilizing bacteria Frateuria aurantia, Regional Centre of Organic Farming. Bangalore: Government of India.

    Google Scholar 

  • Egamberdiyeva, D. (2007). The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Applied Soil Ecology, 36, 184–189.

    Article  Google Scholar 

  • Falk, S. P., Gadoury, D. M., Pearson, R. C., & Seem, R. C. (1995). Partial control of grape powdery mildew by the mycoparasite Ampelomyces quisqualis. Plant Disease, 79, 483–490.

    Article  Google Scholar 

  • Garrett, S. D. (1958). Inoculums potential as a factor limiting lethal action by Trichoderma viride Fr. On Armillaria mellea (Fr.) Quelet. Transactions of the British Mycological Society, 41, 157–164.

    Article  Google Scholar 

  • Ghosheh, H. (2005). Constraints in implementing biological weed control: A review. Weed biology and management, 5(3), 83–92.

    Article  Google Scholar 

  • Goyal, S., & Sindhu, S. S. (2011). Composting of rice straw using different inocula and analysis of compost quality. Microbiology Journal, 1, 126–138.

    Article  Google Scholar 

  • Gupta, A. K. (2004). The complete technology book on biofertilizers and organic farming. New Delhi: National Institute of Industrial Research.

    Google Scholar 

  • Hameeda, B., Rupela, O., Reddy, G., & Satyavani, K. (2006). Application of plant growth-promoting bacteria associated with composts and macrofauna for growth promotion of Pearl millet (Pennisetum glaucum L). Biology and Fertility of Soils, 43, 221–227.

    Article  Google Scholar 

  • He, D., Zheng, X. D., Yin, Y. M., Sun, P., & Zhang, H. Y. (2003). Yeast application for controlling apple postharvest diseases associated with Penicillium expansum. Botanical bulletin of Academia Sinica, 44, 211–216.

    Google Scholar 

  • Ignoffo, C. M. (1981). The fungus Nomuraea rileyi as a microbial insecticide. In H. D. Burges (Ed.), Microbial control of pests and plant diseases (pp. 513–538). New York: Academic.

    Google Scholar 

  • Ippolito, A., Ghaouth, A. E., Wilson, C. L., & Wisniewski, M. (2000). Control of postharvest decay of apple fruit by Aureobasidium pullulans and induction of defense responses. Postharvest Biology and Technology, 19, 265–272.

    Article  CAS  Google Scholar 

  • Khunt, M. D., Solanki, V. A., Sabalpara, A. N., & Mahatma, L. (2014). Role of biofertilizers in plant nutrient management under present scenario. In U. C. Bhale (Ed.), Major constraints and verdict of crop productivity. New Delhi: Astral International Private Limited.

    Google Scholar 

  • Lah, K. (2011) Effects of pesticides on human health. In Toxipedia. Available from http://www.toxipedia.org/display/toxipedia/Effects+of+Pesticides+on+Human+Health.

  • Mahatma, L., Makwana, K. V., & Sabalpara, A. N. (2016a). Enhancement of sugarcane production and productivity by the biofertilizers with graded chemical fertilizers. Indian Journal of Sugarcane Technology, 31(01), 6–9.

    Google Scholar 

  • Mahatma, L., Naik, B. M., Mehta, B. P., Solanky, K. U., Chaudhary, P. P., & Sabalpara, A. N. (2016b). Field efficacy of different isolates of Azotobacter croococum for improving the yield of finger millet (Eleusine coracana (L.) Gaertn). World Journal of Pharmaceutical and Life Sciences, 2(5), 285–291.

    Google Scholar 

  • Mahmood, I., Imadi, S. R., Shazadi, K., Gul, A., & Hakeem, K. R. (2016). Effects of pesticides on environment. In K. R. Hakeem et al. (Eds.), Plant, soil and microbes. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-27455-3_13.

    Chapter  Google Scholar 

  • Meekes, E. T. M. (2001). Entomopathogenic fungi against whitefly: Tritrophic interactions between Aschersonia species, Trialeurodes vaporariorum and Bemisia argentifolii, and glasshouse crops. ISBN: 90-5808-443-4.

    Google Scholar 

  • Mehrotra, R. S. (1993). Plant pathology. New Delhi: Tata McGraw Hill Publishing Company.

    Google Scholar 

  • Millard, W. A., & Taylor, C. B. (1927). Antagonism of microorganisms as the controlling factor in the inhibition of scab by green manuring. Annals of Applied Biology, 14, 202–215.

    Article  Google Scholar 

  • Mishra, D. J., Singh, R., Mishra, U. K., & Shahi, S. K. (2013). Role of bio-fertilizer in organic agriculture: A review. Research Journal of Recent Sciences, 2, 39–41.

    CAS  Google Scholar 

  • Mohammadi, K., Ghalavand, A., Aghaalikhani, M., Heidari, G. R., & Sohrabi, Y. (2010). Introducing the sustainable soil fertility system for chickpea (Cicer arietinum L.). African Journal of Biotechnology, 10(32), 6011–6020.

    Google Scholar 

  • Patel, A. H., & Mahatma, L. (2017). Enhancement of nodulation efficiency of Mungbean rhizobia. International Journal of Current Microbiology and Applied Sciences, 6(10), 2581–2585. https://doi.org/10.20546/ijcmas.2017.610.303.

    Article  CAS  Google Scholar 

  • Ramanujam, B., Rangeshwaran, R., Sivakmar, G., Mohan, M., & Yandigeri, M. S. (2014). Management of insect pests by microorganisms. Proceedings of the Indian National Science Academy, 80(2), 455–471.

    Article  Google Scholar 

  • Rodriguez-Kabana, R., Jones G. M., & Chet, I. (1987). Biological control of nematodes: Soil amendments and microbial antagonists plant and soil Vol. 100, No. 1/3. In Proceedings of international symposium: Plant and soil: Interfaces and interactions Wageningen, The Netherlands 6–8 August 1986, (pp. 237–247).

    Google Scholar 

  • Sabalpara A. N. (2014). Mass multiplication of biopesticides at farm level. In Presidential address delivered at the 35th ISMPP annual conference, Dr PDKV Akola, MS, 8 Jan 2014.

    Google Scholar 

  • Sevilla, M., & Kennedy, C. (2000). Colonization of rice and other cereals by Acetobacter diazotrophicus, an endophyte of sugarcane. In J. K. Ladha & P. M. Reddy (Eds.), The quest for nitrogen fixation in rice. Proceedings of the third working group meeting on assessing opportunities for nitrogen fixation in rice. Makati City: International Rice Research Institute.

    Google Scholar 

  • Shahzad, S. M., Khalid, A., Arshad, M., Khalid, M., & Mehboob, I. (2008). Integrated use of plant growth promoting bacteria and P-enriched compost for improving growth, yield and nodulating of Chickpea. Pakistan Journal of Botany, 40, 1735–1441.

    Google Scholar 

  • Soytong, K., & Ratanacherdchai, K. (2005). Application of mycofungicide to control late blight of potato. Journal of Agricultural Technology, 1(1), 19–32.

    Google Scholar 

  • Spencer, D. M., & Parasitic, P. T. (1981). Effects of Verticillium lecanii on two rust fungi. Transactions of the British Mycological Society, 77, 535–542.

    Article  Google Scholar 

  • Stubbs, T. L., & Kennedy, A. C. (2012). Microbial weed control and microbial herbicides. InR. Alvarez-Fernandez (Ed.), Herbicides environmental impact studies and management approaches (pp. 135–166). Croatia: InTech, Rijeka.

    Google Scholar 

  • Sundara, B., Natarajan, V., & Hari, K. (2002). Influence of phosphorus solubilizing bacteria on the changes in soil available phosphorus and sugarcane yields. Field Crops Research, 77, 43–49.

    Article  Google Scholar 

  • Sztejnberg, A., Galper, S., Mazar, S., & Lisker, N. (1989). Ampelomyces quisqualis for biological and integrated control of powdery mildews in Israel. Journal of Phytopathology, 124, 285–295.

    Article  CAS  Google Scholar 

  • Tandel, M. H., & Mahatma, L. (2016). Standardization of mass multiplication protocol for arbuscular mycorrhizal fungi isolated from the South Gujarat. Advances in Life Sciences, 5(21), 9681–9685.

    Google Scholar 

  • Tian, B., Yang, J., & Zhang, K. Q. (2007). Bacteria used in the biological control of plant-parasitic nematodes: Populations, mechanisms of action, and future prospects. FEMS Microbiology Ecology, 61, 197–213.

    Article  CAS  Google Scholar 

  • Tilak, K. V. B. R., Ranganayaki, N., Pal, K. K., De, R., Saxena, A. K., Nautiyal, C. S., Mittal, S., Tripathi, A. K., & Johri, B. N. (2005). Diversity of plant growth and soil health supporting bacteria. Current Science, 89, 136–150. toxipedia.org/display/toxipedia/Effects+of+Pesticides+on+Human+Health. Accessed 16 May 2016.

  • Vose, P. B., & Ruschel, A. P. (1981). Associative N2 –Fixation. Boca Raton: CRC press.

    Google Scholar 

  • Weller, D. M. (1988). Biological control of soil borne plant pathogens in the rhizosphere with bacteria. Annual Review of Phytopathology, 26, 379–407.

    Article  Google Scholar 

  • Whitelaw, M. A. (2001). Growth promotion of plants inoculated with phosphate solubilizing fungi. Advances in Agronomy, 69, 99–151.

    Article  Google Scholar 

  • Zahran, H. H. (1999). Rhizobium-legume Symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiology and Molecular Biology Reviews, 63, 968–989.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lalit Mahatma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sabalpara, A.N., Mahatma, L. (2019). Role of Microbes in Sustainable Agriculture. In: Peshin, R., Dhawan, A. (eds) Natural Resource Management: Ecological Perspectives . Sustainability in Plant and Crop Protection. Springer, Cham. https://doi.org/10.1007/978-3-319-99768-1_9

Download citation

Publish with us

Policies and ethics