Skip to main content

Mueller Matrix Approach for Engineering Asymmetric Fano-resonance Line Shape in Anisotropic Optical System

  • Chapter
  • First Online:
Fano Resonances in Optics and Microwaves

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 219))

  • 2699 Accesses

Abstract

The Fano resonances observed in diverse micro and nano optical systems have received particular attention due to their numerous potential applications like sensing, switching, lasing, filters and robust color display, nonlinear and slow-light devices, invisibility cloaking, and so forth. For most of these applications, it is highly desirable that the asymmetric spectral line shape of Fano resonance can be controlled or modulated by some experimentally accessible parameters. In this chapter, we discuss a new concept based on polarization Mueller matrix analysis for tuning the Fano interference effect and the resulting asymmetric spectral line shape in anisotropic optical system. The approach is founded on a generalized model of anisotropic Fano resonance and exploits the differential polarization response (anisotropy) of the two interfering modes to achieve unprecedented control over Fano resonance. Illustrative results on the use of the model for tuning Fano resonance in coupled plasmonic systems are presented. In this context, the fundamentals of polarized light, the mathematical framework of Stokes-Mueller formalism and the basic polarimetry parameters encoded in Mueller matrix are discussed. The specifics of a novel dark field Mueller matrix spectroscopy system and its use for studying the polarization response of Fano resonance in plasmonic systems is illustrated with selected examples. The chapter concludes with an outlook on the prospects of the polarization-optimized anisotropic Fano resonant systems for applications involving control and manipulation of electromagnetic waves at the nano scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. U. Fano, Phys. Rev. 124(6), 1866 (1961)

    Article  ADS  Google Scholar 

  2. A.C. Johnson et al., Phys. Rev. Lett. 93(10), 106803 (2004)

    Article  ADS  Google Scholar 

  3. I. Mazumdar, A.R.P. Rau, V.S. Bhasin, Phys. Rev. Lett. 97(6), 062503 (2006)

    Article  ADS  Google Scholar 

  4. A.R. Schmidt et al., Nature 465(7298), 570 (2010)

    Article  ADS  Google Scholar 

  5. P. Fan et al., Nat. Mater. 13(5), 471 (2014)

    Article  ADS  Google Scholar 

  6. B. Luk’yanchuk et al., Nat. Mater. 9(9), 707 (2010)

    Article  ADS  Google Scholar 

  7. C. Ott et al., Science 340(6133), 716 (2013)

    Article  ADS  Google Scholar 

  8. Y. Sonnefraud, ACS Nano 4(3), 1664 (2010)

    Article  Google Scholar 

  9. A. Christ et al., Phys. Rev. Lett. 91(18), 183901 (2003)

    Article  ADS  Google Scholar 

  10. S.A. Maier, Plasmonics: Fundamentals and Applications (Springer Science & Business Media, 2007)

    Google Scholar 

  11. J.N. Anker et al., Nat. Mater. 7(6), 442 (2008)

    Article  ADS  Google Scholar 

  12. W.-S. Chang et al., Nano Lett. 12(9), 4977 (2012)

    Article  ADS  Google Scholar 

  13. A. Bärnthaler et al., Phys. Rev. Lett. 105(5), 056801 (2010)

    Article  ADS  Google Scholar 

  14. C. Wu et al., Nat. Mater. 11(1), 69 (2012)

    Article  ADS  Google Scholar 

  15. K. Nozaki et al., Opt. Express 21(10), 11877 (2013)

    Article  ADS  Google Scholar 

  16. A. Kaldun et al., Phys. Rev. Lett. 112(10), 103001 (2014)

    Article  ADS  Google Scholar 

  17. M.R. Shcherbakov et al., Phys. Rev. Lett. 108(25), 253903 (2012)

    Article  ADS  Google Scholar 

  18. C. Wu, A.B. Khanikaev, G. Shvets, Phys. Rev. Lett. 106(10), 107403 (2011)

    Article  ADS  Google Scholar 

  19. B. Zhang, Light Sci. Appl. 1(10), e32 (2012)

    Article  ADS  Google Scholar 

  20. N.I. Zheludev et al., Nat. Photonics 2(6), 351 (2008)

    Article  ADS  Google Scholar 

  21. Y. Zhu et al., Adv. Opt. Mater. 1(1), 61 (2013)

    Article  Google Scholar 

  22. A. Christ, Phys. Rev. B 70(12), 125113 (2004)

    Article  ADS  Google Scholar 

  23. G. Gantzounis, N. Stefanou, N. Papanikolaou, Phys. Rev. B 77(3), 035101 (2008)

    Article  ADS  Google Scholar 

  24. M. Hentschel, ACS Nano 5(3), 2042 (2011)

    Article  Google Scholar 

  25. J.B. Lassiter et al., Nano Lett. 10(8), 3184 (2010)

    Article  ADS  Google Scholar 

  26. M. Lisunova et al., J. Phys. D: Appl. Phys. 46(48), 485103 (2013)

    Article  Google Scholar 

  27. S.K. Ray, ACS Nano 11(2), 1641 (2017)

    Article  Google Scholar 

  28. C.-L. Du et al., Plasmonics 4(3), 217 (2009)

    Article  MathSciNet  Google Scholar 

  29. T.K. Sau et al., Adv. Mater. 22(16), 1805 (2010)

    Article  Google Scholar 

  30. C. Sönnichsen et al., Phys. Rev. Lett. 88(7), 077402 (2002)

    Article  ADS  Google Scholar 

  31. J. Müller et al., Appl. Phys. Lett. 81(1), 171 (2002)

    Article  ADS  Google Scholar 

  32. K. Drozdowicz-Tomsia et al., Chem. Phys. Lett. 468(1), 69 (2009)

    Article  ADS  Google Scholar 

  33. Z. Gryczynski et al., Chem. Phys. Lett. 421(1), 189 (2006)

    Article  ADS  Google Scholar 

  34. O. Schubert et al., Nano Lett. 8(8), 2345 (2008)

    Article  ADS  Google Scholar 

  35. N. Lippok et al., Nat. Photonics 11(9), 2017 (2017)

    Article  Google Scholar 

  36. J. Soni, H. Purwar, N. Ghosh, Opt. Commun. 285(6), 1599 (2012)

    Article  ADS  Google Scholar 

  37. S. Chandel et al., Sci. Rep. 6, 26466 (2016)

    Article  ADS  Google Scholar 

  38. Y. Huang, D.-H. Kim, Nanoscale 3(8), 3228 (2011)

    Article  ADS  Google Scholar 

  39. L. Li et al., Light Sci. Appl. 4(9), e330 (2015)

    Article  Google Scholar 

  40. D. Li, Nat. Photonics 11(6), 336 (2017)

    Article  ADS  Google Scholar 

  41. T. Shegai et al., Proc. Natl. Acad. Sci. 105(43), 16448 (2008)

    Article  ADS  Google Scholar 

  42. D.H. Goldstein, Polarized Light (CRC Press, 2016)

    Google Scholar 

  43. S.D. Gupta, N. Ghosh, A. Banerjee Wave Optics: Basic Concepts and Contemporary Trends, (CRC Press, 2015)

    Google Scholar 

  44. C. Brosseau, Fundamentals of Polarized Light: A Statistical Optics Approach (Wiley-Interscience, 1998)

    Google Scholar 

  45. N. Ghosh, M.F.G. Wood, I.A. Vitkin, J. Biomed. Opt. 13(4), 044036 (2008)

    Article  ADS  Google Scholar 

  46. N. Ghosh, I.A. Vitkin, J. Biomed. Opt. 16(11), 110801 (2011)

    Article  ADS  Google Scholar 

  47. S.-Y. Lu, R.A. Chipman, JOSA A 13(5), 1106 (1996)

    Article  ADS  Google Scholar 

  48. N. Ortega-Quijano, J.L. Arce-Diego, Opt. Lett. 36(10), 1942 (2011)

    Article  ADS  Google Scholar 

  49. R. Ossikovski, Opt. Lett. 36(12), 2330 (2011)

    Article  ADS  Google Scholar 

  50. S. Kumar et al., J. Biomed. Opt. 17(10), 105006 (2012)

    Article  ADS  Google Scholar 

  51. F. Stabo-Eeg, Dissertation, Norges teknisk-naturvitenskapelige universitet, Fakultet for naturvitenskap og teknologi, Institutt for fysikk (2009)

    Google Scholar 

  52. A.D. Martino et al., Thin Solid Films 455, 112 (2004)

    Article  ADS  Google Scholar 

  53. S. Chandel, Curr. Nanomater. 2(1), 60 (2017)

    Article  Google Scholar 

  54. J. Soni et al., Opt. Express 21(13), 15475 (2013)

    Article  ADS  Google Scholar 

  55. R.W. Wood, Proc. Phys. Soc. Lond. 18(1), 269 (1902)

    Article  Google Scholar 

  56. F.J.G. De Abajo, Rev. Mod. Phys. 79(4), 1267 (2007)

    Article  ADS  Google Scholar 

  57. A. Hessel, A.A. Oliner, Appl. Opt. 4(10), 1275 (1965)

    Article  ADS  Google Scholar 

  58. C. Billaudeau et al., Opt. Express 17(5), 3490 (2009)

    Article  ADS  Google Scholar 

  59. M. Sarrazin, J.-P. Vigneron, J.-M. Vigoureux, Phys. Rev. B 67(8), 085415 (2003)

    Article  ADS  Google Scholar 

  60. N.A. Mirin, K. Bao, P. Nordlander, J. Phys. Chem. A 113(16), 4028 (2009)

    Article  Google Scholar 

  61. A.E. Miroshnichenko, S. Flach, Y.S. Kivshar, Rev. Mod. Phys. 82(3), 2257 (2010)

    Article  ADS  Google Scholar 

  62. B. Gallinet, O.J.F. Martin, ACS Nano 5(11), 8999 (2011)

    Article  Google Scholar 

  63. B. Gallinet, O.J.F. Martin, Phys. Rev. B 83(23), 235427 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Ghosh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, A.K., Chandel, S., Ray, S.K., Mitra, P., Ghosh, N. (2018). Mueller Matrix Approach for Engineering Asymmetric Fano-resonance Line Shape in Anisotropic Optical System. In: Kamenetskii, E., Sadreev, A., Miroshnichenko, A. (eds) Fano Resonances in Optics and Microwaves. Springer Series in Optical Sciences, vol 219. Springer, Cham. https://doi.org/10.1007/978-3-319-99731-5_3

Download citation

Publish with us

Policies and ethics