Skip to main content
Log in

Polarization-Dependent Confocal Imaging of Individual Ag Nanorods and Nanoparticles

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Polarization-dependent inelastic optical scattering (IOS) of individual Ag nanorods and nanoparticles are studied by confocal imaging. Stronger IOS is observed at two ends of the nanorod with laser polarizing parallel to the rod long axis while the IOS images of Ag nanoparticles elongate along laser polarization direction. The correlation between the far-field IOS image and near-field spatial distributions of the nanostructures′ electric field can be obtained. The IOS imaging is demonstrated to be an effective technique to study the optical properties of metal nanostructures, which also provides information for their applications in surface-enhanced Raman scattering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Mohanty P, Yoon I, Kang T, Seo K, Varadwaj KSK, Choi W, Park Q, Ahn JP, Suh YD, Ihee H, Kim B (2007) Simple vapor-phase synthesis of single-crystalline Ag nanowires and single-nanowire surface-enhanced Raman scattering. J Am Chem Soc 129:9576–9577. doi:10.1021/ja073050d

    Article  CAS  Google Scholar 

  2. Grigorenko AN, Geim AK, Gleeson HF, Zhang Y, Firsov AA, Khrushchev IY, Petrovic J (2005) Nanofabricated media with negative permeability at visible frequencies. Nature 438:335–338. doi:10.1038/nature04242

    Article  CAS  Google Scholar 

  3. Muhlschlegel P, Eisler HJ, Martin OJF, Hecht B, Pohl DW (2005) Resonant optical antennas. Science 308:1607–1609. doi:10.1126/science.1111886

    Article  CAS  Google Scholar 

  4. Nader E (2007) Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials. Science 317:1698–1702. doi:10.1126/science.1133268

    Article  Google Scholar 

  5. Lal S, Link S, Halas NJ (2007) Nano-optics from sensing to waveguiding. Nat Photonics 1:641–648

    Article  CAS  Google Scholar 

  6. Ditlbacher H, Hohenau A, Wagner D, Kreibig U, Rogers M, Hofer F, Aussenegg FR, Krenn JR (2005) Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy. Phys Rev Lett 95:257403. doi:10.1103/PhysRevLett.95.257403

    Article  Google Scholar 

  7. Hecht B, Bielefeldt H, Novotny L, Inouye Y, Pohl DW (1996) Local excitation, scattering, and interference of surface plasmon. Phys Rev Lett 77:1889–1892. doi:10.1103/PhysRevLett.77.1889

    Article  CAS  Google Scholar 

  8. Hillenbrand R, Keilmann F (2001) Optical oscillation modes of plasmon particles observed in direct space by phase-contrast near-field microscopy. Appl Phys B 73:239–243

    CAS  Google Scholar 

  9. Lim JK, Imura K, Nagahara T, Kim SK, Okamoto H (2005) Imaging and dispersion relations of surface plasmon modes in silver nanorods by near-field spectroscopy. Chem Phys Lett 412:41–45. doi:10.1016/j.cplett.2005.06.094

    Article  CAS  Google Scholar 

  10. Huang HJ, Yu CP, Chang HC, Chiu KP, Chen HM, Liu RS, Tsai DP (2007) Plasmonic optical properties of a single gold nanorod. Opt Express 15:7132–7139. doi:10.1364/OE.15.007132

    Article  CAS  Google Scholar 

  11. Félidj N, Laurent G, Grand J, Aubard J, Lévi G, Hohenau A, Aussenegg FR, Krenn JR (2006) Far-field Raman imaging of short-wavelength particle plasmons on gold nanorods. Plasmonics 1:35–39. doi:10.1007/s11468-005-9004-1

    Article  Google Scholar 

  12. Schider G, Krenn JR, Hohenau A, Ditlbacher H, Leitner A, Aussenegg FR, Schaich WL, Puscasu I, Monacelli B, Boreman G (2003) Plasmon dispersion relation of Au and Ag nanowires. Phys Rev B 68:155427. doi:10.1103/PhysRevB.68.155427

    Article  Google Scholar 

  13. Anatoliy P, Almuth H, Gerovon P, Uwe K (2004) Substrate effect on the optical response of silver nanoparticles. Nanotechnology 15:1890–1896. doi:10.1088/0957-4484/15/12/036

    Article  Google Scholar 

  14. Tao A, Kim F, Hess C, Goldberger J, He RR, Sun YG, Xia YN, Yang PD (2003) Langmuir–Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy. Nano Lett. 3:1229–1233. doi:10.1021/nl0344209

    Article  CAS  Google Scholar 

  15. Veshapidze G, Trachy ML, Shah MH, dePaola BD (2006) Reducing the uncertainty in laser beam size measurement with a scanning edge method. Appl Opt 45:8197–8199. doi:10.1364/AO.45.008197

    Article  CAS  Google Scholar 

  16. Dulkeith E, Niedereichholz T, Klar TA, Feldmann J, von Plessen G, Gittins DI, Mayya KS, Caruso F (2004) Plasmon emission in photoexcited gold nanoparticles. Phys Rev B 70:205424. doi:10.1103/PhysRevB.70.205424

    Article  Google Scholar 

  17. Boyd GT, Yu ZH, Shen YR (1986) Photoinduced luminescence from noble metals and its enhancement on roughened surfaces. Phys Rev B 33:7923–7936. doi:10.1103/PhysRevB.33.7923

    Article  CAS  Google Scholar 

  18. Bouhelier A, Bachelot R, Lerondel G, Kostcheev S, Royer P, Wiederrecht GP (2005) Surface plasmon characteristics of tunable photoluminescence in single gold nanorods. Phys Rev Lett 95:267405. doi:10.1103/PhysRevLett.95.2674

    Article  CAS  Google Scholar 

  19. Smitha SL, Nissamudeen KM, Philip D, Gopchandran KG (2008) Studies on surface plasmon resonance and photoluminescence of silver nanoparticles. Spectrochim Acta Part A 71:186–190. doi:10.1016/j.saa.2007.12.002

    Article  CAS  Google Scholar 

  20. Lukas N (2007) Effective wavelength scaling for optical antennas. Phys Rev Lett 98:266802. doi:10.1103/PhysRevLett.98.266802

    Article  Google Scholar 

  21. Johnson PB, Christy RW (1972) Optical constants of noble metals. Phys. Rev. B 6:4370–4739. doi:10.1103/PhysRevB.6.4370

    Article  CAS  Google Scholar 

  22. Palik ED (ed) (1985) Handbook of optical constants of solids. Academic, Orlando

  23. Du CL, You YM, Kasim J, Ni ZH, Yu T, Wong CP, Fan HM, Shen ZX (2008) Confocal white light reflection imaging for characterization of metal nanostructures. Opt Commun 281:5360–5363. doi:10.1016/j.optcom.2008.07.078

    Article  CAS  Google Scholar 

  24. Abe S, Kajikawa K (2006) Linear and nonlinear optical properties of gold nanospheres immobilized on a metallic surface. Phys Rev B 74:035416. doi:10.1103/PhysRevB.74.035416

    Article  Google Scholar 

  25. Okamoto T, Yamaguchi I (2003) Optical absorption study of the surface plasmon resonance in gold nanoparticles immobilized onto a gold substrate by self-assembly technique. J Phys Chem B 107:10321–10324. doi:10.1021/jp034537l

    Article  CAS  Google Scholar 

  26. Knight MW, Wu YP, Lassiter JB, Nordlander P, Halas NJ (2009) Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle. Nano Lett . doi:10.1021/nl900945q ASAP

    Google Scholar 

  27. Nie SM, Emory SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275:1102–1106. doi:10.1126/science.275.5303.1102

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZeXiang Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, C., You, Y., Zhang, X. et al. Polarization-Dependent Confocal Imaging of Individual Ag Nanorods and Nanoparticles. Plasmonics 4, 217–222 (2009). https://doi.org/10.1007/s11468-009-9095-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-009-9095-1

Keywords

Navigation