Skip to main content

Fano Resonances in Light Scattering by Finite Obstacles

  • Chapter
  • First Online:
Fano Resonances in Optics and Microwaves

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 219))

  • 2729 Accesses

Abstract

Light scattering by finite obstacles, either a single particle or a number of particles in arbitrary configuration, exhibits various resonant effects. It turns out that almost any resonant response, either in directional or total light scattering, can be efficiently described in terms of Fano resonance. One of the peculiar features of the Fano resonance is complete destructive interference, which can be associated with radiationless excitations, such as nontrivial anapole modes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. U. Fano, Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 124(6), 1866–1878 (1961)

    Article  ADS  Google Scholar 

  2. A.E. Miroshnichenko, S. Flach, Y.S. Kivshar, Fano resonances in nanoscale structures. Rev. Modern Phys. 82(3), 2257–2298 (2010)

    Article  ADS  Google Scholar 

  3. G. Breit, E. Wigner, Capture of slow neutrons. Phys. Rev. 49, 519–531 (1936)

    Article  ADS  Google Scholar 

  4. A.K. Bhatia, A. Temkin, Line-shape parameters for \(^{1}p\) feshbach resonances in he and \({\rm li}^{+}\). Phys. Rev. A 29, 1895–1900 (1984)

    Article  ADS  Google Scholar 

  5. A. Temkin, A.K. Bhatia, Theory and Calculation of Resonances and Autoionization of Two-electron Atoms and Ions (Springer, US, Boston, MA, 1985), pp. 1–34

    Google Scholar 

  6. W.T. Masselink, P.J. Pearah, J. Klem, C.K. Peng, H. Morkoç, G.D. Sanders, Y.-C. Chang, Absorption coefficients and exciton oscillator strengths in AlGaAs-GaAs superlattices. Phys. Rev. B 32, 8027–8034 (1985)

    Article  ADS  Google Scholar 

  7. S. Bar-Ad, P. Kner, M.V. Marquezini, S. Mukamel, D.S. Chemla, Quantum confined fano interference. Phys. Rev. Lett. 78, 1363–1366 (1997)

    Article  ADS  Google Scholar 

  8. V. Bellani, E. PÃrez, S. Zimmermann, L. Viña, R. Hey, K. Ploog, Evolution of fano resonances in two- and three-dimensional semiconductors with a magnetic field. Solid State Commun. 97(6), 459–464 (1996)

    Article  ADS  Google Scholar 

  9. S. Glutsch, P. Lefebvre, D.S. Chemla, Optical absorption of type-ii superlattices. Phys. Rev. B 55, 15786–15790 (1997)

    Article  ADS  Google Scholar 

  10. A.A. Clerk, X. Waintal, P.W. Brouwer, Fano resonances as a probe of phase coherence in quantum dots. Phys. Rev. Lett. 86, 4636–4639 (2001)

    Article  ADS  Google Scholar 

  11. C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998)

    Google Scholar 

  12. B.S. Luk’yanchuk, A.E. Miroshnichenko, Y.S. Kivshar, Fano resonances and topological optics: an interplay of far- and near-field interference phenomena. J. Opt. 15, 073001 (2013)

    Article  ADS  Google Scholar 

  13. B. Luk’yanchuk, N.I. Zheludev, S.A. Maier, N.J. Halas, P. Nordlander, H. Giessen, C.T. Chong, The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 9(9), 707–715 (2010)

    Article  ADS  Google Scholar 

  14. B. Garcia-Camara, J.F. Algorri, A. Cuadrado, V. Urruchi, J.M. Sanchez-Pena, R. Serna, R. Vergaz, All-optical nanometric switch based on the directional scattering of semiconductor nanoparticles. J. Phys. Chem. C 119(33), 19558–19564 (2015)

    Article  Google Scholar 

  15. J. Yan, P. Liu, Z. Lin, H. Wang, H. Chen, C. Wang, G. Yang, Directional Fano resonance in a silicon nano sphere dimer. ACS Nano 9(3), 2968–2980 (2015)

    Article  Google Scholar 

  16. M.F. Limonov, M.V. Rybin, A.N. Poddubny, Y.S. Kivshar, Fano resonances in photonics. Nat. Photonics 11(9), 543–554 (2017)

    Article  Google Scholar 

  17. M.V. Rybin, D.S. Filonov, P.A. Belov, Y.S. Kivshar, M.F. Limonov, Switching from visibility to invisibility via Fano resonances: theory and experiment. Sci. Rep. 5, 8774 (2015)

    Google Scholar 

  18. M.V. Rybin, K.B. Samusev, I.S. Sinev, G. Semouchkin, E. Semouchkina, Y.S. Kivshar, M.F. Limonov, Mie scattering as a cascade of Fano resonances. Opt. Express 21(24), 30107–30113 (2013)

    Article  ADS  Google Scholar 

  19. B. Luk’yanchuk, R. Paniagua-Dominguez, A.I. Kuznetsov, A.E. Miroshnichenko, Y.S. Kivshar, Suppression of scattering for small dielectric particles: anapole mode and invisibility. Phil. Trans. R. Soc. Math. Phys. Eng. Sci. 375, 2090 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  20. A.E. Miroshnichenko. A.B. Evlyukhin, Y.F. Yu, R.M. Bakker, A. Chipouline, A.I. Kuznetsov, B. Luk’yanchuk, B.N. Chichkov, Y.S. Kivshar, Nonradiating anapole modes in dielectric nanoparticles. Nat. Commun. 6, 8069 (2015)

    Google Scholar 

  21. W. Liu, B. Lei, J. Shi, H. Hu, A.E. Miroshnichenko, Elusive pure anapole excitation in homogenous spherical nanoparticles with radial anisotropy. J. Nanomater. 2015, 672957 (2015)

    Google Scholar 

  22. W. Liu, J. Shi, B. Lei, H. Hu, A.E. Miroshnichenko, Efficient excitation and tuning of toroidal dipoles within individual homogenous nanoparticles. Opt. Express 23(19), 24738–24747 (2015)

    Article  ADS  Google Scholar 

  23. W. Liu, J. Zhang, B. Lei, H. Hu, A.E. Miroshnichenko, Invisible nanowires with interfering electric and toroidal dipoles. Opt. Lett. 40(10), 2293–2296 (2015)

    Article  ADS  Google Scholar 

  24. B. Luk’yanchuk, R. Paniagua-Dominguez, A.I. Kuznetsov, A.E. Miroshnichenko, Y.S. Kivshar, Hybrid anapole modes of high-index dielectric nanoparticles. Phys. Rev. A 95, 063820 (2017)

    Google Scholar 

  25. P. Grahn, A. Shevchenko, M. Kaivola, Electromagnetic multipole theory for optical nanomaterials. New J. Phys. 14(9), 093033–093112 (2012)

    Article  ADS  Google Scholar 

  26. https://www.comsol.com/model/multipole-analysis-of-electromagnetic-scattering-31901

  27. J.D. Jackson, Classical electrodynamics (Wiley, 1998)

    Google Scholar 

  28. A.E. Miroshnichenko, Non-Rayleigh limit of the Lorenz-Mie solution and suppression of scattering by spheres of negative refractive index. Phys. Rev. A 80, 013808 (2009)

    Google Scholar 

  29. M.I. Tribelsky, B.S. Luk’yanchuk, Anomalous light scattering by small particles. Phys. Rev. Lett. 97, 263902 (2006)

    Google Scholar 

  30. M.I. Tribelsky, Anomalous light absorption by small particles. Europhys. Lett. (EPL) 94, 14004 (2011)

    Article  ADS  Google Scholar 

  31. M.I. Tribelsky, S. Flach, A.E. Miroshnichenko, A.V. Gorbach, Y.S. Kivshar, Light scattering by a finite obstacle and Fano resonances. Phys. Rev. Lett. 100, 043903 (2008)

    Google Scholar 

  32. G. Gbur, Nonradiating sources and other “invisible” objects. Prog. Opt. 45, 273 (2003)

    Google Scholar 

  33. N. Papasimakis, V.A. Fedotov, V. Savinov, T.A. Raybould, N.I. Zheludev, Electromagnetic toroidal excitations in matter and free space. Nat. Mater. 15(3), 263–271 (2016)

    Article  ADS  Google Scholar 

  34. J.S.T. Gongora, A.E. Miroshnichenko, Y.S. Kivshar, A. Fratalocchi, Anapole nanolasers for mode-locking and ultrafast pulse generation. Nat. Commun. 8, 15535 (2017)

    Google Scholar 

  35. T. Shibanuma, G. Grinblat, P. Albella, S.A. Maier, Efficient third harmonic generation from metal-dielectric hybrid nanoantennas. Nano Lett. 17(4), 2647–2651 (2017)

    Article  ADS  Google Scholar 

  36. T. Feng, Y. Xu, W. Zhang, A.E. Miroshnichenko, Ideal magnetic dipole scattering. Phys. Rev. Lett. 118, 173901 (2017)

    Google Scholar 

  37. M.I. Tribelsky, A.E. Miroshnichenko, Giant in-particle field concentration and Fano resonances at light scattering by high-refractive-index particles. Phys. Rev. A 93, 053837 (2016)

    Google Scholar 

  38. M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A.P. Alivisatos, N. Liu, Transition from isolated to collective modes in plasmonic oligomers. Nano Lett. 10(7), 2721–2726 (2010)

    Article  ADS  Google Scholar 

  39. J. Sancho-Parramon, S. Bosch, Dark modes and Fano resonances in plasmonic clusters excited by cylindrical vector beams. ACS Nano 6(9), 8415–8423 (2012)

    Article  Google Scholar 

  40. J. Ye, F. Wen, H. Sobhani, J.B. Lassiter. P. Van Dorpe, P. Nordlander, N.J. Halas, Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS. Nano Lett. 12(3), 1660–1667 (2012)

    Article  ADS  Google Scholar 

  41. D.-J. Cai, Y.-H. Huang, W.-J. Wang, W.-B. Ji, J.-D. Chen, Z.-H. Chen, S.-D. Liu, Fano resonances generated in a single dielectric homogeneous nanoparticle with high structural symmetry. J. Phys. Chem. C 119(8), 4252–4260 (2015)

    Article  ADS  Google Scholar 

  42. T. Cao, J. Bao, L. Mao, T. Zhang, A. Novitsky, M. Nieto-Vesperinas, C.-W. Qiu, Controlling lateral Fano interference optical force with Au-Ge2Sb2Te5 hybrid nanostructure. ACS Photonics 3(10), 1934–1942 (2016)

    Article  Google Scholar 

  43. K.E. Chong, B. Hopkins, I. Staude, A.E. Miroshnichenko, J. Dominguez, M. Decker, D.N. Neshev, I. Brener, Y.S. Kivshar, Observation of Fano resonances in all-dielectric nanoparticle oligomers. Small 10(10), 1985–1990 (2014)

    Article  Google Scholar 

  44. K.E. Chong, H.W. Orton, I. Staude, M. Decker, A.E. Miroshnichenko, I. Brener, Y.S. Kivshar, D.N. Neshev, Refractive index sensing with Fano resonances in silicon oligomers. Phil. Trans. R Soc. Math. Phys. Eng. Sci. 375(2017), 2090

    Article  ADS  Google Scholar 

  45. B. Hopkins, D.S. Filonov, S.B. Glybovski, A.E. Miroshnichenko, Hybridization and the origin of Fano resonances in symmetric nanoparticle trimers. Phys. Rev. B 92, 045433 (2015)

    Google Scholar 

  46. S. Lepeshov, A. Krasnok, I. Muldhin, D. Zuev, A. Gudovskikh, V. Milichko, P. Belov, A. Miroshnichenko, Fine-tuning of the magnetic Fano resonance in hybrid oligomers via fs-laser-induced reshaping. ACS Photonics 4(3), 536–543 (2017)

    Article  Google Scholar 

  47. S.-D. Liu, Y.-B. Yang, Z.-H. Chen, W.-J. Wang, H.-M. Fei, M.-J. Zhang, Y.-C. Wang, Excitation of multiple Fano resonances in plasmonic clusters with D-2h point group symmetry. J. Phys. Chem. C 117(27), 14218–14228 (2013)

    Article  Google Scholar 

  48. A.E. Miroshnichenko, Y.S. Kivshar, Fano resonances in all-dielectric oligomers. Nano Lett. 12(12), 6459–6463 (2012)

    Article  ADS  Google Scholar 

  49. M. Rahmani, B. Luk’yanchuk, M. Hong, Fano resonance in novel plasmonic nanostructures. Laser Photonics Rev. 7(3), 329–349 (2013)

    Article  ADS  Google Scholar 

  50. M. Rahmani, A.S. Shorokhov. B. Hopkins, A.E. Miroshnichenko, M.R. Shcherbakov, R. Camacho-Morales, A.A. Fedyanin, D.N. Neshev, Y.S. Kivshar, Nonlinear symmetry breaking in symmetric oligomers. ACS Photonics 4(3), 454–461 (2017)

    Article  Google Scholar 

  51. M. Rahmani, E. Yoxall, B. Hopkins, Y. Sonnefraud, Y. Kivshar, M. Hong, C. Phillips, S.A. Maier, A.E. Miroshnichenko, Plasmonic nanoclusters with rotational symmetry: polarization-invariant far-field response vs. changing near-field distribution. ACS Nano 7(12), 11138–11146 (2013)

    Article  Google Scholar 

  52. N.A. Mirin, K. Bao, P. Nordlander, Fano resonances in plasmonic nanoparticle aggregates. J. Phys. Chem. A 113(16), 4028–4034 (2009)

    Article  ADS  Google Scholar 

  53. T.J. Davis, D.E. Gomez, K.C. Vernon, Simple model for the hybridization of surface plasmon resonances in metallic nanoparticles. Nano Lett. 10(7), 2618–2625 (2010)

    Article  ADS  Google Scholar 

  54. F. Hao, P. Nordlander, Y. Sonnefraud, P.V. Dorpe, S.A. Maier, Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing. ACS Nano 3(3), 643–652 (2009)

    Article  Google Scholar 

  55. T. Pakizeh, C. Langhammer, I. Zoric, P. Apell, M. Kall, Intrinsic Fano interference of localized plasmons in Pd nanoparticles. Nano Lett. 9(2), 882–886 (2009)

    Article  ADS  Google Scholar 

  56. Y. Sonnefraud, N. Verellen, H. Sobhani, G.A.E. Vandenbosch, V.V. Moshchalkov, P. Van Dorpe, P. Nordlander, S.A. Maier, Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities. ACS Nano 4(3), 1664–1670 (2010)

    Article  Google Scholar 

  57. N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V.V. Moshchalkov, P. Van Dorpe, P. Nordlander, S.A. Maier, Fano resonances in individual coherent plasmonic nanocavities. Nano Lett. 9(4), 1663–1667 (2009)

    Article  ADS  Google Scholar 

  58. F. Shafiei, F. Monticone, K.Q. Le, X.-X. Liu, T. Hartseld, A. Alu, X. Li, A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance. Nat. Nanotechnol. 8(2), 95–99 (2013)

    Google Scholar 

  59. B. Hopkins, D.S. Filonov, A.E. Miroshnichenko, F. Monticone, A. Alu, Y.S. Kivshar, Interplay of magnetic responses in all-dielectric oligomers to realize magnetic fano resonances. ACS Photonics 2(6), 724–729 (2015)

    Article  Google Scholar 

  60. B. Hopkins, A.N. Poddubny, A.E. Miroshnichenko, Y.S. Kivshar, Revisiting the physics of Fano resonances for nanoparticle oligomers. Phys. Rev. A 88, 053819 (2013)

    Google Scholar 

  61. B. Hopkins, W. Liu, A.E. Miroshnichenko, Y.S. Kivshar, Optically isotropic responses induced by discrete rotational symmetry of nanoparticle clusters. Nanoscale 5(14), 6395–6403 (2013)

    Article  ADS  Google Scholar 

  62. D.S. Filonov, A.P. Slobozhanyuk, A.E. Krasnok, P.A. Belov, E.A. Nenasheva, B. Hopkins, A.E. Miroshnichenko, Y.S. Kivshar, Near-field mapping of Fano resonances in all-dielectric oligomers. Appl. Phys. Lett. 104, 021104 (2014)

    Article  ADS  Google Scholar 

  63. B. Hopkins, A.N. Poddubny, A.E. Miroshnichenko, Y.S. Kivshar, Circular dichroism induced by Fano resonances in planar chiral oligomers. Laser Photonics Rev. 10(1), 137–146 (2016)

    Article  ADS  Google Scholar 

  64. K.Q. Le, Fano-induced circular dichroism in three-dimensional plasmonic chiral metamolecules. J. Electron. Mater. 46(10), 5577–5581 (2017)

    Article  ADS  Google Scholar 

  65. M.R. Shcherbakov, D.N. Neshev, B. Hopkins, A.S. Shorokhov, I. Staude, E.V. Melik-Gaykazyan, M. Decker, A.A. Ezhov, A.E. Miroshnichenko, I. Brener, A.A. Fedyanin, Y.S. Kivshar, Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response. Nano Lett. 14(11), 6488–6492 (2014)

    Article  ADS  Google Scholar 

  66. A.S. Shorokhov. E.V. Melik-Gaykazyan, D.A. Smirnova, B. Hopkins, K.E. Chong, D.-Y. Choi, M.R. Shcherbakov, A.E. Miroshnichenko, D.N. Neshev, A.A. Fedyanin, Y.S. Kivshar, Multifold enhancement of third-harmonic generation in dielectric nanoparticles driven by magnetic Fano resonances. Nano Lett. 16(8), 4857–4861 (2016)

    Article  ADS  Google Scholar 

  67. O. Wolf, S. Campione, Y. Yang, I. Brener, Multipolar second harmonic generation in a symmetric nonlinear metamaterial. Sci. Rep. 7, 8101 (2017)

    Google Scholar 

  68. G. Grinblat, Y. Li, M.P. Nielsen, R.F. Oulton, S.A. Maier, Enhanced third harmonic generation in single germanium nanodisks excited at the anapole mode, Nano Lett. 16(7), 4635–4640 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey Miroshnichenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Miroshnichenko, A. (2018). Fano Resonances in Light Scattering by Finite Obstacles. In: Kamenetskii, E., Sadreev, A., Miroshnichenko, A. (eds) Fano Resonances in Optics and Microwaves. Springer Series in Optical Sciences, vol 219. Springer, Cham. https://doi.org/10.1007/978-3-319-99731-5_20

Download citation

Publish with us

Policies and ethics