Skip to main content
Log in

Fano-Induced Circular Dichroism in Three-Dimensional Plasmonic Chiral Metamolecules

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This paper introduces a three-dimensional (3-D) artificial chiral nanostructure, which has variant total optical loss spectroscopies under left- and right-handed circularly polarized (LCP and RCP) incident light. The resulting circular dichroism is induced by Fano resonance generated by the engineered chiral metamolecule, which consists of asymmetrically arranged gold (Au) nanoparticles in three dimensions. The Fano resonance generation is a consequence of modal interference between bright and dark plasmonic modes of asymmetric constituent dimers of the metamolecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Berova, K. Nakanishi, and R.W. Woody, Circular Dichroism: Principles and Applications (New York: VCH, 1994).

    Google Scholar 

  2. L.D. Barron, Molecular Light Scattering and Optical Activity (England: Cambridge University Press, 2004).

    Book  Google Scholar 

  3. L.A. Nguyen, H. He, and C. Pham-Huy, Int. J. Biomed. Sci. 2, 85 (2006).

    Google Scholar 

  4. M. Eichelbaum, Toxicol. Trans. 17, 514 (1995).

    Article  Google Scholar 

  5. R.A. Rosenberg, D. Mishra, and R. Naaman, Angew. Chem. Int. Ed. 54, 7295 (2015).

    Article  Google Scholar 

  6. D.L. Jaggard, A.R. Mickelson, and C.H. Papas, Appl. Phys. 18, 211 (1979).

    Article  Google Scholar 

  7. J.B. Pendry, Science 306, 1353 (2004).

    Article  Google Scholar 

  8. E. Henry, R.V. Mikhaylovskiy, L.D. Barron, M. Kadodwala, and T.J. Davis, Nano Lett. 12, 3640 (2012).

    Article  Google Scholar 

  9. V.K. Valev, J.J. Baumberg, C. Sibilia, and T. Verbiest, Adv. Mater. 25, 2517 (2013).

    Article  Google Scholar 

  10. J. Yeom, B. Yeom, H. Chan, K.W. Smith, S. Dominguez-Medina, J.H. Bahng, G. Zhao, W.-S. Chang, S.-J. Chang, A. Chuvilin, D. Melnikau, A.L. Rogach, P. Zhang, S. Link, P. Král, and N.A. Kotov, Nat. Mater. 14, 66 (2015).

    Article  Google Scholar 

  11. A.D. Falco, Nat. Mater. 13, 846 (2014).

    Article  Google Scholar 

  12. E. Hendry, T. Carpy, J. Johnston, M. Popland, R.V. Mikhaylovskiy, A.J. Lapthorn, S.M. Kelly, L.D. Barron, N. Gadegaard, and M. Kadodwala, Nat. Nanotechnol. 5, 783 (2010).

    Article  Google Scholar 

  13. N. Meinzer, E. Hendry, and W.L. Barnes, Phys. Rev. B 88, 041407 (2013).

    Article  Google Scholar 

  14. M. Cotrufo, C.I. Osorio, and A.F. Koenderink, ACS Nano 10, 3389 (2016).

    Article  Google Scholar 

  15. V.K. Valev, N. Smisdom, A.V. Silhanek, D. De Clercq, W. Gillijns, M. Ameloot, V.V. Moshchalkov, and T. Verbiest, Nano Lett. 9, 3945 (2009).

    Article  Google Scholar 

  16. Z. Li, M. Mutlu, and E. Ozbay, J. Opt. 15, 023001 (2013).

    Article  Google Scholar 

  17. S.S. Oh and O. Hess, Nano Converg. 2, 24 (2015).

    Article  Google Scholar 

  18. Z. Wang, F. Cheng, T. Winsor, and Y. Lu, Nanotechnology 27, 412001 (2016).

    Article  Google Scholar 

  19. J. Xie, Y. Duan, and S. Che, Adv. Funct. Mater. 22, 3750 (2012).

    Article  Google Scholar 

  20. X. Shen, A. Asenjo-Garcia, Q. Liu, Q. Jiang, F.J.G. de Abajo, N. Liu, and B. Ding, Nano Lett. 13, 2128 (2013).

    Article  Google Scholar 

  21. T. Yasukawa, H. Miyamura, and S. Kobayashi, Chem. Soc. Rev. 43, 1450 (2014).

    Article  Google Scholar 

  22. A. Kuzyk, Y. Yang, X. Duan, S. Stoll, A.O. Govorov, H. Sugiyama, M. Endo, and N. Liu, Nat. Commun. 7, 10591 (2016).

    Article  Google Scholar 

  23. S.J. Yoo and Q.-H. Park, Phys. Rev. Lett. 114, 203003 (2015).

    Article  Google Scholar 

  24. B. Yeom, H. Zhang, H. Zhang, J.I.I. Park, K. Kim, A.O. Govorov, and N.A. Kotov, Nano Lett. 13, 5277 (2013).

    Article  Google Scholar 

  25. I.J. Hodgkinson, Q.H. Wu, M. Arnold, M.W. McCall, and A. Lakhtakia, Opt. Commun. 210, 201 (2002).

    Article  Google Scholar 

  26. S. Zu, Y. Bao, and Z. Fang, Nanoscale 8, 3900 (2016).

    Article  Google Scholar 

  27. R. Magnusson, C.-L. Hsiao, J. Birch, H. Arwin, and K. Järrendahl, Opt. Mater. Express 4, 1389 (2014).

    Article  Google Scholar 

  28. Y. Wang, W. Qi, R. Huang, X. Yang, M. Wang, R. Su, and Z. He, J. Am. Chem. Soc. 137, 7869 (2015).

    Article  Google Scholar 

  29. B. Hopkins, A.N. Poddubny, A.E. Miroshnichenko, and Y.S. Kivshar, Laser Photon. Rev. 10, 137 (2016).

    Article  Google Scholar 

  30. L. Hu, Y. Huang, L. Fang, G. Chen, H. Wei, and Y. Fang, Sci. Rep. 5, 16069 (2015).

    Article  Google Scholar 

  31. F. Shafiei, F. Monticone, K.Q. Le, X.-X. Liu, T. Hartsfield, A. Alù, and X. Li, Nat. Nanotechnol. 8, 95 (2013).

    Article  Google Scholar 

  32. K.Q. Le and A. Alù, Appl. Phys. Lett. 105, 141118 (2014).

    Article  Google Scholar 

  33. K.Q. Le and J. Bai, Soc. Am. B 32, 595 (2015).

    Article  Google Scholar 

  34. K.Q. Le, A. Alù, and J. Bai, J. Appl. Phys. 117, 023118 (2015).

    Article  Google Scholar 

  35. K.Q. Le, J. Bai, and H.P.T. Nguyen, J. Lum. 173, 199 (2016).

    Article  Google Scholar 

  36. T.K. Nguyen, K.Q. Le, A. Canimoglu, and N. Can, Appl. Rad. Iso. 115, 109 (2016).

    Article  Google Scholar 

  37. K.Q. Le, H.P.T. Nguyen, Q.M. Ngo, A. Canimoglu, and N. Can, J. Alloys Comp. 669, 246 (2016).

    Article  Google Scholar 

  38. S. Kim, F. Shafiei, D. Ratchford, and X. Li, Nanotechnology 22, 115301 (2011).

    Article  Google Scholar 

  39. U. Hohenester and A. Trugler, Comput. Phys. Commun. 183, 370 (2012).

    Article  Google Scholar 

  40. P.B. Johnson and R.W. Christy, Phys. Rev. B 6, 4370 (1972).

    Article  Google Scholar 

  41. K.Q. Le, Q.M. Ngo, and T.K. Nguyen, IEEE J. Sel. Top. Quan. Electron. 23, 6900506 (2017).

    Article  Google Scholar 

  42. B. Gallinet and O.J.F. Martin, ACS Nano 7, 6978 (2013).

    Article  Google Scholar 

  43. Z. Zhu, B. Bai, O. You, Q. Li, and S. Fan, Light: Sci. Appl. 4, e296 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant No. “103.03-2017.32″.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khai Q. Le.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, K.Q. Fano-Induced Circular Dichroism in Three-Dimensional Plasmonic Chiral Metamolecules. J. Electron. Mater. 46, 5577–5581 (2017). https://doi.org/10.1007/s11664-017-5644-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5644-0

Keywords

Navigation