Skip to main content

Local Versus Global Dynamics and Control of an AFM Model in a Safety Perspective

  • Chapter
  • First Online:
Global Nonlinear Dynamics for Engineering Design and System Safety

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 588))

Abstract

The role of local and global dynamics to assess a system robustness and actual safety in operating conditions is investigated, by also studying the effect of different local and global control techniques on the nonlinear behavior of a noncontact AFM. First, the nonlinear dynamical behavior of a single-mode model of noncontact AFM is analyzed in terms of stability of the main periodic solutions, as well as attractors robustness and basins integrity. To the same AFM model, an external feedback control is inserted during its nonlinear continuum formulation, with the aim to keep the system response to an operationally suitable one. The dynamical analysis of the controlled system is developed to investigate and verify the effects of control into the system overall behavior, which could be unexpectedly influenced by the local nature of the control technique. A different control technique is finally applied to the AFM model, acting on global bifurcation events to obtain an enlargement of the systems safe region in parameters space. The analytical procedure, based on Melnikov method, is applied to the homoclinic bifurcation involving the system hilltop saddle, and its practical effects as regards possibly increasing the system overall robustness are numerically investigated by means of a dynamical integrity analysis. Then, a fully numerical procedure is implemented to possibly control global bifurcations involving generic saddles. The method proves to succeed in delaying the drop down of the erosion profile, thus increasing the overall robustness of the system during operating conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alsaleem, F. M., Younis, M. I., & Ruzziconi, L. (2010). An experimental and theoretical investigation of dynamic pull-in in MEMS resonators actuated electrostatically. Journal of Microelectromechanical Systems, 19(4), 794–806.

    Article  Google Scholar 

  • Arjmand, M. T., Sadeghian, H., Salarieh, H., & Alasty, A. (2008). Chaos control in AFM systems using nonlinear delayed feedback via sliding mode control. Nonlinear Analysis: Hybrid Systems, 2, 993–1001.

    MathSciNet  MATH  Google Scholar 

  • Bahrami, A., & Nayfeh, A. H. (2012). On the dynamics of tapping mode atomic force microscope probes. Nonlinear Dynamics, 70, 1605–1617.

    Article  MathSciNet  Google Scholar 

  • Belardinelli, P., & Lenci, S. (2016). A first parallel programming approach in basins of attraction computation. International Journal of Non-Linear Mechanics, 80, 76–81.

    Article  Google Scholar 

  • Crespo da Silva, M. R. M., & Glynn, C. C. (1978). Nonlinear flexural-flexural-torsional dynamics of inextensional beams. I. Equations of motion. Journal of Structural Mechanics, 6(4), 437–448.

    Google Scholar 

  • Doedel, E. J., & Oldeman, B. E. (2012). AUTO-07p: Continuation and bifurcation software for ordinary differential equations. Montreal: Concordia University.

    Google Scholar 

  • Eaton, P., & West, P. (2010). Atomic force microscopy. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Hornstein, S., & Gottlieb, O. (2008). Nonlinear dynamics, stability and control of the scan process in noncontacting atomic force microscopy. Nonlinear Dynamics, 54, 93–122.

    Article  MathSciNet  Google Scholar 

  • Hornstein, S., & Gottlieb, O. (2012). Nonlinear multimode dynamics and internal resonances of the scan process in noncontacting atomic force microscopy. Journal of Applied Physics, 112, 074314.

    Article  Google Scholar 

  • Israelachvili, J. (1992). Intermolecular and surface forces. London: Academic Press.

    Google Scholar 

  • Kreuzer, E., & Lagemann, B. (1996). Cell mappings for multi-degree-of-freedom-systems—Parallel computing in nonlinear dynamics. Chaos, Solitons & Fractals, 7(10), 1683–1691.

    Article  MathSciNet  Google Scholar 

  • Lenci, S., & Rega, G. (2003a). Optimal control of homoclinic bifurcation: Theoretical treatment and practical reduction of safe basin erosion in the Helmholtz oscillator. Journal of Vibration and Control, 9, 281–315.

    MathSciNet  MATH  Google Scholar 

  • Lenci, S., & Rega, G. (2003b). Optimal control of nonregular dynamics in a Duffing oscillator. Nonlinear Dynamics, 33, 71–86.

    Article  MathSciNet  Google Scholar 

  • Lenci, S., & Rega, G. (2003c). Optimal numerical control of single-well to cross-well chaos transition in mechanical systems. Chaos, Solitons & Fractals, 15, 173–186.

    Article  MathSciNet  Google Scholar 

  • Lenci, S., & Rega, G. (2004). A unified control framework of the nonregular dynamics of mechanical oscillators. Journal of Sound and Vibration, 278, 1051–1080.

    Article  MathSciNet  Google Scholar 

  • Lenci, S., & Rega, G. (2005). Heteroclinic bifurcations and optimal control in the nonlinear rocking dynamics of generic and slender rigid blocks. International Journal of Bifurcation and Chaos, 15(6), 1901–1918.

    Article  MathSciNet  Google Scholar 

  • Lenci, S., & Rega, G. (2006). Control of pull-in dynamics in a nonlinear thermoelastic electrically actuated microbeam. Journal of Micromechanics and Microengineering, 16, 390–401.

    Article  Google Scholar 

  • Morita, S., Giessibl, F. J., & Wiesendanger, R. (2009). Noncontact atomic force microscopy. Berlin: Springer.

    Book  Google Scholar 

  • Payton, O., Champneys, A. R., Homer, M. E., Picco, L., & Miles, M. J. (2011). Feedback-induced instability in tapping mode atomic force microscopy: Theory and experiment. Proceedings of the Royal Society A, 467(2130), 1801–1822.

    Article  MathSciNet  Google Scholar 

  • Rega, G., & Lenci, S. (2008). Dynamical integrity and control of nonlinear mechanical oscillators. Journal of Vibration and Control, 14(1–2), 159–179.

    Article  Google Scholar 

  • Rega, G., & Lenci, S. (2015). A global dynamics perspective for system safety from macro- to nano-mechanics: Analysis, control, and design engineering. Applied Mechanics Reviews, 67(5), 050802.

    Article  Google Scholar 

  • Rega, G., Lenci, S. & Ruzziconi, L. (2018). Dynamical integrity: A novel paradigm for evaluating load carrying capacity. In S. Lenci & G. Rega (Eds.), Global nonlinear dynamics for engineering design and system safety (Vol. 588, pp. 27–112). CISM Courses and Lectures. Cham: Springer.

    Google Scholar 

  • Rega, G., & Settimi, V. (2013). Bifurcation, response scenarios and dynamic integrity in a single-mode model of noncontact atomic force microscopy. Nonlinear Dynamics, 73, 101–123.

    Article  MathSciNet  Google Scholar 

  • Sarid, D. (1991). Scanning force microscopy: With applications to electric, magnetic, and atomic forces. New York: Oxford University Press.

    Google Scholar 

  • Sarid, D., Ruskell, T. G., Workman, R. K., & Chen, D. (1996). Driven nonlinear atomic force microscopy cantilevers: From noncontact to tapping modes of operation. Journal of Vacuum Science & Technology B, 14(2), 864–867.

    Article  Google Scholar 

  • Settimi, V., Gottlieb, O., & Rega, G. (2015). Asymptotic analysis of a noncontact AFM microcantilever sensor with external feedback control. Nonlinear Dynamics, 79(4), 2675–2698.

    Article  MathSciNet  Google Scholar 

  • Settimi, V., & Rega, G. (2016a). Exploiting global dynamics of a noncontact atomic force microcantilever to enhance its dynamical robustness via numerical control. International Journal of Bifurcation and Chaos, 26(7), 1630018.

    Article  MathSciNet  Google Scholar 

  • Settimi, V., & Rega, G. (2016b). Global dynamics and integrity in noncontacting atomic force microscopy with feedback control. Nonlinear Dynamics, 86(4), 2261–2277.

    Article  Google Scholar 

  • Settimi, V., & Rega, G. (2016c). Influence of a locally-tailored external feedback control on the overall dynamics of a noncontact AFM model. International Journal of Non-Linear Mechanics, 80, 144–159.

    Article  Google Scholar 

  • Settimi, V., & Rega, G. (2017). Response robustness and safety against jump to contact in AFMs controlled via different techniques. Procedia IUTAM, 22, 184–191.

    Google Scholar 

  • Settimi, V., Rega, G., & Lenci, S. (2016). Analytical control of homoclinic bifurcation of the hilltop saddle in a noncontact atomic force microcantilever. Procedia IUTAM, 19, 19–26.

    Article  Google Scholar 

  • Szemplinska-Stupnicka, W. (1992). Cross-well chaos and escape phenomena in driven oscillators. Nonlinear Dynamics, 3, 225–243.

    Article  Google Scholar 

  • Thompson, J. M. T., & Stewart, H. B. (2002). Nonlinear dynamics and chaos. New York: Wiley.

    MATH  Google Scholar 

  • Xiong, F.-R., Qin, Z.-C., Ding, C., Hernández, Q., Fernandez, J., Schütze, O., et al. (2015). Parallel cell mapping method for global analysis of high-dimensional nonlinear dynamical systems. Journal of Applied Mechanics, 82(11), 111010.

    Article  Google Scholar 

  • Yamasue, K., & Hikihara, T. (2006). Control of microcantilevers in dynamic force microscopy using time delayed feedback. Review of Scientific Instruments, 77, 053703.

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from PRIN 2015 (no. 2105JW9NJT) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeria Settimi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 CISM International Centre for Mechanical Sciences

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Settimi, V., Rega, G. (2019). Local Versus Global Dynamics and Control of an AFM Model in a Safety Perspective. In: Lenci, S., Rega, G. (eds) Global Nonlinear Dynamics for Engineering Design and System Safety. CISM International Centre for Mechanical Sciences, vol 588. Springer, Cham. https://doi.org/10.1007/978-3-319-99710-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99710-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99709-4

  • Online ISBN: 978-3-319-99710-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics