Skip to main content

Evolution of Stem Cell Products in Medicine: Future of Off-the-Shelf Products

  • Chapter
  • First Online:
Stem Cell Drugs - A New Generation of Biopharmaceuticals

Part of the book series: Stem Cells in Clinical Applications ((SCCA))

Abstract

Stem cell transplantation has become the new therapy for various degenerative diseases (such as Parkinson’s disease and spinal cord injury), and even for myocardial infarction, type II diabetes mellitus, and cancer. From the first transplantation of therapeutic stem cells in humans to the present day, the use of stem cells or stem cell-based products has reached incredible milestones and involved the evolution of different generations of these products. Stem cell products are different from generation to generation with respect to purity and phenotype of the stem cells, whether in the form of whole cell or a subcellular product. This review aims to introduce and compare the evolution of stem cell-based products with regard to their advantages and disadvantages, as well as the treatment efficacy of the various generations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADSC:

Adipose-derived stem cells

BM:

Bone marrow

CHMP:

The Committee for Medicinal Products for Human Use

CSCC_ASC:

Cryopreserved Cardiology Stem Cell Centre adipose-derived stromal cell

GMP:

Good manufacturing practice

HLA:

Human leukocyte antigen

IMDM:

Iscove’s Modified Dulbecco’s Medium

MNC:

Mononuclear cells

MSC:

Mesenchymal stem cell

PRP:

Platelet-rich plasma

SVF:

Stromal vascular fractions

T2DM:

Type 2 diabetes mellitus

UC:

Umbilical cord

References

  • Akiyama T, Sato S, Chikazawa-Nohtomi N, Soma A, Kimura H, Wakabayashi S et al (2018) Efficient differentiation of human pluripotent stem cells into skeletal muscle cells by combining RNA-based MYOD1-expression and POU5F1-silencing. Sci Rep 8(1):1189

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Al Madhoun A, Ali H, AlKandari S, Atizado VL, Akhter N, Al-Mulla F et al (2016) Defined three-dimensional culture conditions mediate efficient induction of definitive endoderm lineage from human umbilical cord Wharton's jelly mesenchymal stem cells. Stem Cell Res Ther 7(1):165

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alvarez P, Carrillo E, Velez C, Hita-Contreras F, Martinez-Amat A, Rodriguez-Serrano F et al (2013) Regulatory systems in bone marrow for hematopoietic stem/progenitor cells mobilization and homing. Biomed Res Int 2013:312656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amos DB, Bach FH (1968) Phenotypic expressions of the major histocompatibility locus in man (HL-A): leukocyte antigens and mixed leukocyte culture reactivity. J Exp Med 128(4):623–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Antoine C, Muller S, Cant A, Cavazzana-Calvo M, Veys P, Vossen J et al (2003) Long-term survival and transplantation of haemopoietic stem cells for immunodeficiencies: report of the European experience 1968–99. Lancet (Lond) 361(9357):553–560

    Article  Google Scholar 

  • Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T et al (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275(5302):964–967

    Article  CAS  Google Scholar 

  • Bach PB, Giralt SA, Saltz LB (2017) FDA approval of tisagenlecleucel: promise and complexities of a $475000 cancer drug. JAMA 318(19):1861–1862

    Article  PubMed  Google Scholar 

  • Bae Y-J, Kwon Y-R, Kim HJ, Lee S, Kim Y-J (2017) Enhanced differentiation of mesenchymal stromal cells by three-dimensional culture and azacitidine. Blood Res 52(1):18–24

    Article  PubMed  PubMed Central  Google Scholar 

  • Battula VL, Treml S, Bareiss PM, Gieseke F, Roelofs H, de Zwart P et al (2009) Isolation of functionally distinct mesenchymal stem cell subsets using antibodies against CD56, CD271, and mesenchymal stem cell antigen-1. Haematologica 94(2):173–184

    Article  CAS  PubMed  Google Scholar 

  • Bhakta G, Lee KH, Magalhaes R, Wen F, Gouk SS, Hutmacher DW et al (2009) Cryopreservation of alginate-fibrin beads involving bone marrow derived mesenchymal stromal cells by vitrification. Biomaterials 30(3):336–343

    Article  CAS  PubMed  Google Scholar 

  • Bhansali S, Dutta P, Kumar V, Yadav MK, Jain A, Mudaliar S et al (2017) Efficacy of autologous bone marrow-derived mesenchymal stem cell and mononuclear cell transplantation in type 2 diabetes mellitus: a randomized, placebo-controlled comparative study. Stem Cells Dev 26(7):471–481

    Article  CAS  PubMed  Google Scholar 

  • Bongso A, Lee EH (2005) Stem cells: from bench to bedside. World Scientific, Singapore

    Book  Google Scholar 

  • Boyette LB, Creasey OA, Guzik L, Lozito T, Tuan RS (2014) Human bone marrow-derived mesenchymal stem cells display enhanced clonogenicity but impaired differentiation with hypoxic preconditioning. Stem Cells Transl Med 3(2):241–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broxmeyer HE, Douglas GW, Hangoc G, Cooper S, Bard J, English D et al (1989) Human umbilical cord blood as a potential source of transplantable hematopoietic stem/progenitor cells. Proc Natl Acad Sci 86(10):3828–3832

    Article  CAS  PubMed  Google Scholar 

  • Broxmeyer H, Kurtzberg J, Gluckman E, Auerbach A, Douglas G, Cooper S et al (1991) Umbilical cord blood hematopoietic stem and repopulating cells in human clinical transplantation. Blood Cells 17(2):313–329

    CAS  PubMed  Google Scholar 

  • Cardoso TC, Ferrari HF, Garcia AF, Novais JB, Silva-Frade C, Ferrarezi MC et al (2012) Isolation and characterization of Wharton’s jelly-derived multipotent mesenchymal stromal cells obtained from bovine umbilical cord and maintained in a defined serum-free three-dimensional system. BMC Biotechnol 12:18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carella AM, Cavaliere M, Lerma E, Ferrara R, Tedeschi L, Romanelli A et al (2000) Autografting followed by nonmyeloablative immunosuppressive chemotherapy and allogeneic peripheral-blood hematopoietic stem-cell transplantation as treatment of resistant Hodgkin’s disease and non-Hodgkin’s lymphoma. J Clin Oncol 18(23):3918–3924

    Article  CAS  PubMed  Google Scholar 

  • Cesarz Z, Tamama K (2016) Spheroid culture of mesenchymal stem cells. Stem Cells Int 2016:9176357

    Article  PubMed  Google Scholar 

  • Chen GL, Paplham P, McCarthy PL (2014) Remestemcel-L for acute graft-versus-host disease therapy. Expert Opin Biol Ther 14(2):261–269

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Shou P, Zheng C, Jiang M, Cao G, Yang Q et al (2016) Fate decision of mesenchymal stem cells: adipocytes or osteoblasts? Cell Death Differ 23(7):1128–1139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi EW, Shin IS, Song JW, Lee M, Yun TW, Yang J et al (2016) Effects of transplantation of CTLA4Ig-overexpressing adipose tissue-derived mesenchymal stem cells in mice with sustained severe rheumatoid arthritis. Cell Transplant 25(2):243–259

    Article  PubMed  Google Scholar 

  • Corotchi MC, Popa MA, Remes A, Sima LE, Gussi I, Lupu PM (2013) Isolation method and xeno-free culture conditions influence multipotent differentiation capacity of human Wharton’s jelly-derived mesenchymal stem cells. Stem Cell Res Ther 4(4):81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dehghani L (2018) Allogenic mesenchymal stem cell derived exosome in patients with acute ischemic stroke. https://clinicaltrials.gov/ct2/show/NCT03384433

  • Dehkordi MB, Madjd Z, Chaleshtori MH, Meshkani R, Nikfarjam L, Kajbafzadeh AM (2016) A simple, rapid, and efficient method for isolating mesenchymal stem cells from the entire umbilical cord. Cell Transplant 25(7):1287–1297

    Article  PubMed  Google Scholar 

  • Devadas SK, Khairnar M, Hiregoudar SS, Ojha S, Punatar S, Gupta A et al (2017) Is long term storage of cryopreserved stem cells for hematopoietic stem cell transplantation a worthwhile exercise in developing countries? Blood Res 52(4):307–310

    Article  PubMed  PubMed Central  Google Scholar 

  • Dias AD, Elicson JM, Murphy WL (2017) Microcarriers with synthetic hydrogel surfaces for stem cell expansion. Adv Healthc Mater 6(16):PMID 28509413

    Article  CAS  Google Scholar 

  • Domergue S, Bony C, Maumus M, Toupet K, Frouin E, Rigau V et al (2016) Comparison between stromal vascular fraction and adipose mesenchymal stem cells in remodeling hypertrophic scars. PLoS One 11(5):e0156161

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dovgan B, Barlic A, Knezevic M, Miklavcic D (2017) Cryopreservation of human adipose-derived stem cells in combination with trehalose and reversible electroporation. J Membr Biol 250(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Farkas AM, Mariz S, Stoyanova-Beninska V, Celis P, Vamvakas S, Larsson K et al (2017) Advanced therapy medicinal products for rare diseases: state of play of incentives supporting development in Europe. Front Med 4:53

    Article  Google Scholar 

  • Fatima F, Nawaz M (2015) Stem cell-derived exosomes: roles in stromal remodeling, tumor progression, and cancer immunotherapy. Chin J Cancer 34(12):541–553

    CAS  PubMed  Google Scholar 

  • Friedenstein AJ, Gorskaja JF, Kulagina NN (1976) Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol 4(5):267–274

    CAS  PubMed  Google Scholar 

  • Fu X, Yan Y, Li S, Wang J, Jiang B, Wang H et al (2017) Vitrification of rhesus macaque mesenchymal stem cells and the effects on global gene expression. Stem Cells Int 2017:3893691

    Article  PubMed  PubMed Central  Google Scholar 

  • Fukui T, Mifune Y, Matsumoto T, Shoji T, Kawakami Y, Kawamoto A et al (2015) Superior potential of CD34-positive cells compared to total mononuclear cells for healing of nonunion following bone fracture. Cell Transplant 24(7):1379–1393

    Article  PubMed  Google Scholar 

  • Gang EJ, Hong SH, Jeong JA, Hwang SH, Kim SW, Yang IH et al (2004) In vitro mesengenic potential of human umbilical cord blood-derived mesenchymal stem cells. Biochem Biophys Res Commun 321(1):102–108

    Article  CAS  PubMed  Google Scholar 

  • Garber K (2015) RIKEN suspends first clinical trial involving induced pluripotent stem cells. Nat Biotechnol 33(9):890–891

    Article  CAS  PubMed  Google Scholar 

  • Ghali O, Broux O, Falgayrac G, Haren N, van Leeuwen JPTM, Penel G et al (2015) Dexamethasone in osteogenic medium strongly induces adipocyte differentiation of mouse bone marrow stromal cells and increases osteoblast differentiation. BMC Cell Biol 16:9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Giebel B, Kordelas L, Borger V (2017) Clinical potential of mesenchymal stem/stromal cell-derived extracellular vesicles. Stem Cell Investig 4:84

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gluckman E (2000) Current status of umbilical cord blood hematopoietic stem cell transplantation. Exp Hematol 28(11):1197–1205

    Article  CAS  PubMed  Google Scholar 

  • Gluckman E (2001) Hematopoietic stem-cell transplants using umbilical-cord blood. N Engl J Med 344(24):1860–1861

    Article  CAS  PubMed  Google Scholar 

  • Haen SP, Schumm M, Faul C, Kanz L, Bethge WA, Vogel W (2015) Poor graft function can be durably and safely improved by CD34+−selected stem cell boosts after allogeneic unrelated matched or mismatched hematopoietic cell transplantation. J Cancer Res Clin Oncol 141(12):2241–2251

    Article  PubMed  Google Scholar 

  • Hagmann S, Frank S, Gotterbarm T, Dreher T, Eckstein V, Moradi B (2014) Fluorescence activated enrichment of CD146+ cells during expansion of human bone-marrow derived mesenchymal stromal cells augments proliferation and GAG/DNA content in chondrogenic media. BMC Musculoskelet Disord 15:322

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hervy M, Weber JL, Pecheul M, Dolley-Sonneville P, Henry D, Zhou Y et al (2014) Long term expansion of bone marrow-derived hMSCs on novel synthetic microcarriers in xeno-free, defined conditions. PLoS One 9(3):e92120

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hilkens P, Gervois P, Fanton Y, Vanormelingen J, Martens W, Struys T et al (2013) Effect of isolation methodology on stem cell properties and multilineage differentiation potential of human dental pulp stem cells. Cell Tissue Res 353(1):65–78

    Article  CAS  PubMed  Google Scholar 

  • Hung SC, Chen NJ, Hsieh SL, Li H, Ma HL, Lo WH (2002) Isolation and characterization of size-sieved stem cells from human bone marrow. Stem Cells (Dayton, OH) 20(3):249–258

    Article  Google Scholar 

  • Iwase T, Nagaya N, Fujii T, Itoh T, Murakami S, Matsumoto T et al (2005) Comparison of angiogenic potency between mesenchymal stem cells and mononuclear cells in a rat model of hindlimb ischemia. Cardiovasc Res 66(3):543–551

    Article  CAS  PubMed  Google Scholar 

  • Kang H-J, Kim H-S, Zhang S-Y, Park K-W, Cho H-J, Koo B-K et al (2004) Effects of intracoronary infusion of peripheral blood stem-cells mobilised with granulocyte-colony stimulating factor on left ventricular systolic function and restenosis after coronary stenting in myocardial infarction: the MAGIC cell randomised clinical trial. Lancet 363(9411):751–756

    Article  CAS  PubMed  Google Scholar 

  • Kastrup J, Haack-Sorensen M, Juhl M, Harary Sondergaard R, Follin B, Drozd Lund L et al (2017) Cryopreserved off-the-shelf allogeneic adipose-derived stromal cells for therapy in patients with ischemic heart disease and heart failure-a safety study. Stem Cells Transl Med 6(11):1963–1971

    Article  CAS  PubMed  Google Scholar 

  • Kawamoto A, Iwasaki H, Kusano K, Murayama T, Oyamada A, Silver M et al (2006) CD34-positive cells exhibit increased potency and safety for therapeutic neovascularization after myocardial infarction compared with total mononuclear cells. Circulation 114(20):2163–2169

    Article  PubMed  Google Scholar 

  • Kim R, Lee S, Lee J, Kim M, Kim WJ, Lee HW et al (2018) Exosomes derived from MicroRNA-584 transfected mesenchymal stem cells: novel alternative therapeutic vehicles for cancer therapy. BMB Rep pii:4198

    Google Scholar 

  • Kobayashi H, Ebisawa K, Kambe M, Kasai T, Suga H, Nakamura K et al (2018) Editors’ choice effects of exosomes derived from the induced pluripotent stem cells on skin wound healing. Nagoya J Med Sci 80(2):141–153

    PubMed  PubMed Central  Google Scholar 

  • Kondo M, Wagers AJ, Manz MG, Prohaska SS, Scherer DC, Beilhack GF et al (2003) Biology of hematopoietic stem cells and progenitors: implications for clinical application. Annu Rev Immunol 21(1):759–806

    Article  CAS  PubMed  Google Scholar 

  • Kouroupis D, Churchman SM, McGonagle D, Jones EA (2014) The assessment of CD146-based cell sorting and telomere length analysis for establishing the identity of mesenchymal stem cells in human umbilical cord. F1000Res 3:126

    PubMed  PubMed Central  Google Scholar 

  • Kumagai G, Tsoulfas P, Toh S, McNiece I, Bramlett HM, Dietrich WD (2013) Genetically modified mesenchymal stem cells (MSCs) promote axonal regeneration and prevent hypersensitivity after spinal cord injury. Exp Neurol 248:369–380

    Article  CAS  PubMed  Google Scholar 

  • Kurtzberg J, Prockop S, Teira P, Bittencourt H, Lewis V, Chan KW et al (2014) Allogeneic human mesenchymal stem cell therapy (remestemcel-L, Prochymal) as a rescue agent for severe refractory acute graft-versus-host disease in pediatric patients. Biol Blood Marrow transplant 20(2):229–235

    Article  PubMed  Google Scholar 

  • Kyodo (2018) https://www.japantimes.co.jp/news/2018/05/16/national/science-health/japan-oks-first-clinical-study-ips-cell-based-heart-treatment/#.W0NnWql9gdU

  • Lacerda JF, Martins C, Carmo JA, Lourenco F, Juncal C, Ismail S et al (2005) Haploidentical stem cell transplantation with purified CD34+ cells after a chemotherapy-alone conditioning regimen in heavily transfused severe aplastic anemia. Biol Blood Marrow transplant 11(5):399–400

    Article  CAS  PubMed  Google Scholar 

  • Lan Y-W, Choo K-B, Chen C-M, Hung T-H, Chen Y-B, Hsieh C-H et al (2015) Hypoxia-preconditioned mesenchymal stem cells attenuate bleomycin-induced pulmonary fibrosis. Stem Cell Res Ther 6(1):97

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lauterboeck L, Saha D, Chatterjee A, Hofmann N, Glasmacher B (2016) Xeno-free cryopreservation of bone marrow-derived multipotent stromal cells from Callithrix jacchus. Biopreserv Biobank 14(6):530–538

    Article  CAS  PubMed  Google Scholar 

  • Le PT-B, Van Pham P, Vu NB, Dang LT-T, Phan NK (2016) Expanded autologous adipose derived stem cell transplantation for type 2 diabetes mellitus. Biomed Res Ther 3(12):1034–1044

    Article  Google Scholar 

  • Lee OK, Kuo TK, Chen WM, Lee KD, Hsieh SL, Chen TH (2004) Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood 103(5):1669–1675

    Article  CAS  PubMed  Google Scholar 

  • Li WT, Leu YC, Wu JL (2010) Red-light light-emitting diode irradiation increases the proliferation and osteogenic differentiation of rat bone marrow mesenchymal stem cells. Photomed Laser Surg 28(Suppl 1):S157–S165

    Article  CAS  PubMed  Google Scholar 

  • Li X, Shang Q, Zhang L (2014) Comparison of the efficacy of cord blood mononuclear cells (MNCs) and CD34+ cells for the treatment of neonatal mice with cerebral palsy. Cell Biochem Biophys 70(3):1539–1544

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Guo G, Li L, Chen F, Bao J, Shi YJ et al (2015) Three-dimensional spheroid culture of human umbilical cord mesenchymal stem cells promotes cell yield and stemness maintenance. Cell Tissue Res 360(2):297–307

    Article  CAS  PubMed  Google Scholar 

  • Li J, Li H, Tian W (2018a) Isolation of murine adipose-derived stromal/stem cells using an explant culture method. Methods in molecular biology (Clifton, NJ) 1773:167–171

    Article  Google Scholar 

  • Li J, Curley JL, Floyd ZE, Wu X, Halvorsen YDC, Gimble JM (2018b) Isolation of human adipose-derived stem cells from lipoaspirates. Methods in molecular biology (Clifton, NJ) 1773:155–165

    Article  Google Scholar 

  • Liu Y, Chen X, Han W, Zhang Y (2017a) Tisagenlecleucel, an approved anti-CD19 chimeric antigen receptor T-cell therapy for the treatment of leukemia. Drugs of today (Barcelona, Spain: 1998) 53(11):597–608

    Article  CAS  Google Scholar 

  • Liu X, Li Q, Niu X, Hu B, Chen S, Song W et al (2017b) Exosomes secreted from human-induced pluripotent stem cell-derived mesenchymal stem cells prevent osteonecrosis of the femoral head by promoting angiogenesis. Int J Biol Sci 13(2):232–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu T, Zhang Y, Shen Z, Zou X, Chen X, Chen L et al (2017c) Immunomodulatory effects of OX40Ig gene-modified adipose tissue-derived mesenchymal stem cells on rat kidney transplantation. Int J Mol Med 39(1):144–152

    Article  CAS  PubMed  Google Scholar 

  • Locatelli F, Algeri M, Trevisan V, Bertaina A (2017) Remestemcel-L for the treatment of graft versus host disease. Expert Rev Clin Immunol 13(1):43–56

    Article  CAS  Google Scholar 

  • Lu D, Chen B, Liang Z, Deng W, Jiang Y, Li S et al (2011) Comparison of bone marrow mesenchymal stem cells with bone marrow-derived mononuclear cells for treatment of diabetic critical limb ischemia and foot ulcer: a double-blind, randomized, controlled trial. Diabetes Res Clin Pract 92(1):26–36

    Article  PubMed  Google Scholar 

  • Mandai M, Kurimoto Y, Takahashi M (2017) Autologous induced stem-cell-derived retinal cells for macular degeneration. N Engl J Med 377(8):792–793

    Article  PubMed  Google Scholar 

  • Mannon PJ (2011) Remestemcel-L: human mesenchymal stem cells as an emerging therapy for Crohn’s disease. Expert Opin Biol Ther 11(9):1249–1256

    Article  PubMed  CAS  Google Scholar 

  • Mareschi K, Biasin E, Piacibello W, Aglietta M, Madon E, Fagioli F (2001) Isolation of human mesenchymal stem cells: bone marrow versus umbilical cord blood. Haematologica 86(10):1099–1100

    CAS  PubMed  Google Scholar 

  • Massood E, Maryam K, Parvin S, Mojgan M, Noureddin NM (2013) Vitrification of human umbilical cord Wharton’s jelly-derived mesenchymal stem cells. Cryo Letters 34(5):471–480

    PubMed  Google Scholar 

  • Mazo M, Gavira JJ, Abizanda G, Moreno C, Ecay M, Soriano M et al (2010) Transplantation of mesenchymal stem cells exerts a greater long-term effect than bone marrow mononuclear cells in a chronic myocardial infarction model in rat. Cell Transplant 19(3):313–328

    Article  PubMed  Google Scholar 

  • Mehta A, Verma V, Nandihalli M, Ramachandra CJ, Sequiera GL, Sudibyo Y et al (2014) A systemic evaluation of cardiac differentiation from mRNA reprogrammed human induced pluripotent stem cells. PLoS One 9(7):e103485

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miyagi-Shiohira C, Kobayashi N, Saitoh I, Watanabe M, Noguchi Y, Matsushita M et al (2017) Evaluation of serum-free, xeno-free cryopreservation solutions for human adipose-derived mesenchymal stem cells. Cell Med 9(1–2):15–20

    Article  PubMed  Google Scholar 

  • Miyamoto Y, Oishi K, Yukawa H, Noguchi H, Sasaki M, Iwata H et al (2012) Cryopreservation of human adipose tissue-derived stem/progenitor cells using the silk protein sericin. Cell Transplant 21(2–3):617–622

    Article  PubMed  Google Scholar 

  • Mochizuki M, Nakahara T (2018) Establishment of xenogeneic serum-free culture methods for handling human dental pulp stem cells using clinically oriented in-vitro and in-vivo conditions. Stem Cell Res Ther 9(1):25

    Article  PubMed  PubMed Central  Google Scholar 

  • Monaco L, Faccio L (2017) Patient-driven search for rare disease therapies: the Fondazione Telethon success story and the strategy leading to Strimvelis. EMBO Mol Med 9(3):289–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Negrin RS, Atkinson K, Leemhuis T, Hanania E, Juttner C, Tierney K et al (2000) Transplantation of highly purified CD34+Thy-1+ hematopoietic stem cells in patients with metastatic breast cancer. Biol Blood Marrow Transplant 6(3):262–271

    Article  CAS  PubMed  Google Scholar 

  • O'Rourke C, Day AGE, Murray-Dunning C, Thanabalasundaram L, Cowan J, Stevanato L et al (2018) An allogeneic ‘off the shelf’ therapeutic strategy for peripheral nerve tissue engineering using clinical grade human neural stem cells. Sci Rep 8(1):2951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oyekunle A, Koehl U, Schieder H, Ayuk F, Renges H, Fehse N et al (2006) CD34(+)-selected stem cell boost for delayed or insufficient engraftment after allogeneic stem cell transplantation. Cytotherapy 8(4):375–380

    Article  PubMed  Google Scholar 

  • Panes J, Garcia-Olmo D, Van Assche G, Colombel JF, Reinisch W, Baumgart DC et al (2018) Long-term efficacy and safety of stem cell therapy (Cx601) for complex perianal fistulas in patients with Crohn’s disease. Gastroenterology 154(5):1334–42.e4

    Article  PubMed  Google Scholar 

  • Pellegrini G, Ardigo D, Milazzo G, Iotti G, Guatelli P, Pelosi D et al (2018) Navigating market authorization: the path holoclar took to become the first stem cell product approved in the European Union. Stem Cells Transl Med 7(1):146–154

    Article  PubMed  Google Scholar 

  • Poltavtseva RA, Nikonova YA, Selezneva II, Yaroslavtseva AK, Stepanenko VN, Esipov RS et al (2014) Mesenchymal stem cells from human dental pulp: isolation, characteristics, and potencies of targeted differentiation. Bull Exp Biol Med 158(1):164–169

    Article  CAS  PubMed  Google Scholar 

  • Prasad VK, Lucas KG, Kleiner GI, Talano JA, Jacobsohn D, Broadwater G et al (2011) Efficacy and safety of ex vivo cultured adult human mesenchymal stem cells (prochymal) in pediatric patients with severe refractory acute graft-versus-host disease in a compassionate use study. Biol Blood Marrow Transplant 17(4):534–541

    Article  CAS  PubMed  Google Scholar 

  • Prindull G, Prindull B, Meulen N (1978) Haematopoietic stem cells (CFUc) in human cord blood. Acta Paediatr Scand 67(4):413–416

    Article  CAS  PubMed  Google Scholar 

  • Prockop DJ, Sekiya I, Colter DC (2001) Isolation and characterization of rapidly self-renewing stem cells from cultures of human marrow stromal cells. Cytotherapy 3(5):393–396

    Article  CAS  PubMed  Google Scholar 

  • Qian Q, Qian H, Zhang X, Zhu W, Yan Y, Ye S et al (2012) 5-Azacytidine induces cardiac differentiation of human umbilical cord-derived mesenchymal stem cells by activating extracellular regulated kinase. Stem Cells Dev 21(1):67–75

    Article  CAS  PubMed  Google Scholar 

  • Reardon S, Cyranoski D (2014) Japan stem-cell trial stirs envy. Nature 513(7518):287–288

    Article  CAS  PubMed  Google Scholar 

  • Reich-Slotky R, Colovai AI, Semidei-Pomales M, Patel N, Cairo M, Jhang J et al (2008) Determining post-thaw CD34+ cell dose of cryopreserved haematopoietic progenitor cells demonstrates high recovery and confirms their integrity. Vox Sang 94(4):351–357

    Article  CAS  PubMed  Google Scholar 

  • Roberts I, Baila S, Rice RB, Janssens ME, Nguyen K, Moens N et al (2012) Scale-up of human embryonic stem cell culture using a hollow fibre bioreactor. Biotechnol Lett 34(12):2307–2315

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues JP, Paraguassu-Braga FH, Carvalho L, Abdelhay E, Bouzas LF, Porto LC (2008) Evaluation of trehalose and sucrose as cryoprotectants for hematopoietic stem cells of umbilical cord blood. Cryobiology 56(2):144–151

    Article  CAS  PubMed  Google Scholar 

  • Rogulska O, Petrenko Y, Petrenko A (2017) DMSO-free cryopreservation of adipose-derived mesenchymal stromal cells: expansion medium affects post-thaw survival. Cytotechnology 69(2):265–276

    Article  CAS  PubMed  Google Scholar 

  • Rojewski MT, Fekete N, Baila S, Nguyen K, Furst D, Antwiler D et al (2013) GMP-compliant isolation and expansion of bone marrow-derived MSCs in the closed, automated device quantum cell expansion system. Cell Transplant 22(11):1981–2000

    Article  PubMed  Google Scholar 

  • Roy S, Arora S, Kumari P, Ta M (2014) A simple and serum-free protocol for cryopreservation of human umbilical cord as source of Wharton’s jelly mesenchymal stem cells. Cryobiology 68(3):467–472

    Article  CAS  PubMed  Google Scholar 

  • Schimmer J, Breazzano S (2016) Investor outlook: rising from the ashes; GSK’s European approval of strimvelis for ADA-SCID. Human gene therapy. Clin Dev 27(2):57–61

    CAS  Google Scholar 

  • Schmal O, Seifert J, Schaffer TE, Walter CB, Aicher WK, Klein G (2016) Hematopoietic stem and progenitor cell expansion in contact with mesenchymal stromal cells in a hanging drop model uncovers disadvantages of 3D culture. Stem Cells Int 2016:4148093

    Article  PubMed  CAS  Google Scholar 

  • Sheridan WP, Fox R, Begley C, Maher D, McGrath K, Juttner C et al (1992) Effect of peripheral-blood progenitor cells mobilised by filgrastim (G-CSF) on platelet recovery after high-dose chemotherapy. Lancet 339(8794):640–644

    Article  CAS  PubMed  Google Scholar 

  • Shivakumar SB, Bharti D, Subbarao RB, Jang SJ, Park JS, Ullah I et al (2016) DMSO- and serum-free cryopreservation of Wharton’s jelly tissue isolated from human umbilical cord. J Cell Biochem 117(10):2397–2412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silverman E (2018) Kymriah: a sign of more difficult decisions to come. Managed care (Langhorne, Pa) 27(5):17

    Google Scholar 

  • Somlo G, Sniecinski I, Odom-Maryon T, Nowicki B, Chow W, Hamasaki V et al (1997) Effect of CD34+ selection and various schedules of stem cell reinfusion and granulocyte colony-stimulating factor priming on hematopoietic recovery after high-dose chemotherapy for breast cancer. Blood 89(5):1521–1528

    CAS  PubMed  Google Scholar 

  • Stirnadel-Farrant H, Kudari M, Garman N, Imrie J, Chopra B, Giannelli S et al (2018) Gene therapy in rare diseases: the benefits and challenges of developing a patient-centric registry for Strimvelis in ADA-SCID. Orphanet J Rare Dis 13(1):49

    Article  PubMed  PubMed Central  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  CAS  Google Scholar 

  • Thomas ED (2005) Bone marrow transplantation from the personal viewpoint. Int J Hematol 81(2):89–93

    Article  PubMed  Google Scholar 

  • Vaes B, Van’t Hof W, Deans R, Pinxteren J (2012) Application of MultiStem(R) allogeneic cells for immunomodulatory therapy: clinical progress and pre-clinical challenges in prophylaxis for graft versus host disease. Front Immunol 3:345

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Pham P (2016a) Clinical application of stem cells: an update 2015. Biomed Res Ther 3(02):483–489

    Google Scholar 

  • Van Pham P (2016b) Stem cell drugs: the next generation of pharmaceutical products. Biomed Res Ther 3(10):857–871

    Article  Google Scholar 

  • Van Pham P, Vu NB, Pham VM, Truong NH, Pham TL, Dang LT et al (2014a) Good manufacturing practice-compliant isolation and culture of human umbilical cord blood-derived mesenchymal stem cells. J Transl Med 12:56

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Pham P, Vu NB, Phan NL-C, Le DM, Truong NC, Truong NH et al (2014b) Good manufacturing practice-compliant isolation and culture of human adipose derived stem cells. Biomed Res Ther 1(4):21

    Article  Google Scholar 

  • Van Pham P, Truong NC, Le PT, Tran TD, Vu NB, Bui KH et al (2016a) Isolation and proliferation of umbilical cord tissue derived mesenchymal stem cells for clinical applications. Cell Tissue Bank 17(2):289–302

    Article  CAS  PubMed  Google Scholar 

  • Van Pham P, Vu NB, Phan NK (2016b) Umbilical cord-derived stem cells (MODULATISTTM) show strong immunomodulation capacity compared to adipose tissue-derived or bone marrow-derived mesenchymal stem cells. Biomed Res Ther 3(06):687–696

    Google Scholar 

  • Wan Safwani WKZ, Makpol S, Sathapan S, Chua KH (2012) 5-Azacytidine is insufficient for cardiogenesis in human adipose-derived stem cells. J Neg Results Biomed 11:3

    Article  Google Scholar 

  • Wang HY, Lun ZR, Lu SS (2011) Cryopreservation of umbilical cord blood-derived mesenchymal stem cells without dimethyl sulfoxide. Cryo Letters 32(1):81–88

    PubMed  Google Scholar 

  • Wang C, Xiao R, Cao YL, Yin HY (2017) Evaluation of human platelet lysate and dimethyl sulfoxide as cryoprotectants for the cryopreservation of human adipose-derived stem cells. Biochem Biophys Res Commun 491(1):198–203

    Article  CAS  PubMed  Google Scholar 

  • Wilson A, Trumpp A (2006) Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol 6(2):93

    Article  CAS  PubMed  Google Scholar 

  • Winter JM, Jacobson P, Bullough B, Christensen AP, Boyer M, Reems JA (2014) Long-term effects of cryopreservation on clinically prepared hematopoietic progenitor cell products. Cytotherapy 16(7):965–975

    Article  CAS  PubMed  Google Scholar 

  • Xie CQ, Zhang J, Villacorta L, Cui T, Huang H, Chen YE (2007) A highly efficient method to differentiate smooth muscle cells from human embryonic stem cells. Arterioscler Thromb Vasc Biol 27(12):e311–e312

    Article  CAS  PubMed  Google Scholar 

  • Xue X, Liu Y, Zhang J, Liu T, Yang Z, Wang H (2015) Bcl-xL genetic modification enhanced the therapeutic efficacy of mesenchymal stem cell transplantation in the treatment of heart infarction. Stem Cells Int 2015:176409

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yanagihara K, Uchida S, Ohba S, Kataoka K, Itaka K (2018) Treatment of bone defects by transplantation of genetically modified mesenchymal stem cell spheroids. Mol Ther Meth Clin Dev 9:358–366

    Article  CAS  Google Scholar 

  • Yuan Y, Yan G, Gong R, Zhang L, Liu T, Feng C et al (2017) Effects of blue light emitting diode irradiation on the proliferation, apoptosis and differentiation of bone marrow-derived mesenchymal stem cells. Cell Physiol Biochem 43(1):237–246

    Article  CAS  PubMed  Google Scholar 

  • Zanata F, Bowles A, Frazier T, Curley JL, Bunnell BA, Wu X et al (2018) Effect of cryopreservation on human adipose tissue and isolated stromal vascular fraction cells: in vitro and in vivo analyses. Plastic Reconstruct Surg 141(2):232e–243e

    Article  CAS  Google Scholar 

  • Zhang W, Bai X, Zhao B, Li Y, Zhang Y, Li Z et al (2018) Cell-free therapy based on adipose tissue stem cell-derived exosomes promotes wound healing via the PI3K/Akt signaling pathway. Exp Cell Res pii:S0014-4827(18)30375-6

    Google Scholar 

  • Zhou L, Song Q, Shen J, Xu L, Xu Z, Wu R et al (2017) Comparison of human adipose stromal vascular fraction and adipose-derived mesenchymal stem cells for the attenuation of acute renal ischemia/reperfusion injury. Sci Rep 7:44058

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This research was partly funded by Ministry of Science and Technology, Vietnam under grant number DM.10.DA/15; by Fostering Innovation through Research, Science and Technology via project 15/FIRST/2a/SCI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phuc Van Pham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Van Pham, P., Nguyen, H.T., Vu, N.B. (2018). Evolution of Stem Cell Products in Medicine: Future of Off-the-Shelf Products. In: Pham, P. (eds) Stem Cell Drugs - A New Generation of Biopharmaceuticals. Stem Cells in Clinical Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-99328-7_6

Download citation

Publish with us

Policies and ethics