Skip to main content

Modelling Ion Channels

  • Chapter
  • First Online:
Mathematical Modelling in Plant Biology

Abstract

Plant adaption and survival relies on signalling, much of which is achieved through concentration changes in ions. Furthermore, plants can influence their growth and shape via changes in hydraulic pressure which in turn can be modulated by changes in ionic concentrations that drive osmosis. We present an introduction to mathematical modelling of ionic currents and transmembrane voltages, both intracellular and intercellular. We introduce the modelling techniques used to describe the physical processes involved in ion channel dynamics and illustrate their application using generic examples. We begin by discussing modelling of individual ion channels. Next, we present computational algorithms most commonly employed in simulating ionic currents passing via a single as well as an ensemble of the same ion channel type. We then discuss modelling of ionic current flow across cellular membrane that could involve different ion channel species. We end with an overview of modelling action potentials and their propagation resulting from interactions between different ion channels within as well as between cells. We illustrate this using a simplified example of plant action potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arrhenius SA (1889) Über die dissociationswärme und den einfluß der temperatur auf den dissociationsgrad der elektrolyte. Zeitschrift für Physikalische Chemie 4:96–116

    Google Scholar 

  2. Brink PR, Cronin K, Ramanan S (1996) Gap junctions in excitable cells. J Bioenerg Biomembr 28(4):351–358

    Article  CAS  Google Scholar 

  3. Dietrich P, Anschütz U, Kugler A, Becker D (2010) Physiology and biophysics of plant ligand-gated ion channels. Plant Biol 12(s1):80–93

    Article  CAS  Google Scholar 

  4. Eyring H (1935) The activated complex and the absolute rate of chemical reactions. Chem Rev 17:65–77

    Article  CAS  Google Scholar 

  5. Eyrin H (1935) The activated complex in chemical reactions. Chem Rev 3:107–115

    Google Scholar 

  6. Faulkner C (2013) Receptor-mediated signaling at plasmodesmata. Front Plant Sci 4:521

    Article  Google Scholar 

  7. FitzHugh R (1961) Impulses and physiological states in theoretical models of nerve membrane. Biophys J 1(6):445–466

    Article  CAS  Google Scholar 

  8. Fox R (1997) Stochastic versions of the hodgkin-huxley equations. Biophys J 72:2068–2074

    Article  CAS  Google Scholar 

  9. Fromm J, Lautner S (2007) Electrical signals and their physiological significance in plants. Plant Cell Environ 30(3):249–257

    Article  CAS  Google Scholar 

  10. Gillespie D (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81:2340–2361

    Article  CAS  Google Scholar 

  11. Gradmann D (2001) Models for oscillations in plants. Funct Plant Biol 28(7):577–590

    Article  CAS  Google Scholar 

  12. Gradmann D, Blatt M, Thiel G (1993) Electrocoupling of ion transporters in plants. J Membr Biol 136(3):327–332

    Article  CAS  Google Scholar 

  13. Granqvist E, Wysham D, Hazledine S, Kozlowski W, Sun J, Charpentier M, Vaz Martins T, Haleux P, Tsaneva-Atanasova K, Downie JA, Oldroyd GE, Morris RJ (2012) Buffering capacity explains signal variation in symbiotic calcium oscillations. Plant Physiol 160(4):2300–2310

    Article  CAS  Google Scholar 

  14. Hedrich R (2012) Ion channels in plants. Physiol Rev 92(4):1777–1811

    Article  CAS  Google Scholar 

  15. Hedrich R, Neher E (1987) Cytoplasmic calcium regulates voltage-dependent ion channels in plant vacuoles. Nature 329(6142):833–836

    Article  Google Scholar 

  16. Hedrich R, Salvador-Recatalà V, Dreyer I (2016) Electrical wiring and long-distance plant communication. Trends Plant Sci 21(5):376–387

    Article  CAS  Google Scholar 

  17. Hille B et al. (2001) Ion channels of excitable membranes, vol 507. Sinauer, Sunderland

    Google Scholar 

  18. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117(4):500

    Article  CAS  Google Scholar 

  19. Keener JP, Sneyd J (2009) Mathematical physiology, vol 1. Springer, Berlin

    Book  Google Scholar 

  20. Lowen SB, Liebovitch LS, White JA (1999) Fractal ion-channel behavior generates fractal firing patterns in neuronal models. Phys Rev E 59(5):5970–5980

    Article  CAS  Google Scholar 

  21. Spalding EP, Slayman CL, Goldsmith MHM, Gradmann D, Bertl A (1992) Ion channels in arabidopsis plasma membrane transport characteristics and involvement in light-induced voltage changes. Plant Physiol 99(1):96–102

    Article  CAS  Google Scholar 

  22. Sukhov V, Nerush V, Orlova L, Vodeneev V (2011) Simulation of action potential propagation in plants. J Theor Biol 291:47–55

    Article  Google Scholar 

  23. Sukhov V, Vodeneev V (2009) A mathematical model of action potential in cells of vascular plants. J Membr Biol 232(1–3):59

    Article  CAS  Google Scholar 

  24. Tester M (1990) Tansley review no. 21 plant ion channels: whole-cell and single channel studies. New Phytol 114(3):305–340

    Article  Google Scholar 

  25. Unwin N (1989) The structure of ion channels in membranes of excitable cells. Neuron 3(6):665–676

    Article  CAS  Google Scholar 

  26. Ward JM, Schroeder J (1997) Roles of ion channels in initiation of signal transduction in higher plants. In: Signal transduction in plants. Springer, Berlin, pp 1–22

    Google Scholar 

Download references

Acknowledgements

KW was generously supported by the Wellcome Trust Institutional Strategic Support Award (WT105618MA). KT-A gratefully acknowledges the financial support of the EPSRC via grant EP/N014391/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Tabak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wedgwood, K.C.A., Tabak, J., Tsaneva-Atanasova, K. (2018). Modelling Ion Channels. In: Morris, R. (eds) Mathematical Modelling in Plant Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-99070-5_3

Download citation

Publish with us

Policies and ethics