Skip to main content

An Evolution-Based High-Cycle Fatigue Constraint in Topology Optimization

  • Conference paper
  • First Online:
EngOpt 2018 Proceedings of the 6th International Conference on Engineering Optimization (EngOpt 2018)

Abstract

We develop a topology optimization method including high-cycle fatigue as a constraint. The fatigue model is based on a continuous-time approach, which uses the concept of a moving endurance surface as a function of the stress history and back stress evolution. The development of damage only occurs when the stress state lies outside the endurance surface. Furthermore, an aggregation function, which approximates the maximum fatigue damage, is implemented. As the optimization workflow is sensitivity-based, the fatigue sensitivities are determined using an adjoint sensitivity analysis. The capabilities of the presented approach are tested on numerical models where the problem is to maximize the stiffness subject to high-cycle fatigue constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amzallag, C., Gerey, J., Robert, J., Bahuaud, J.: Standardization of the rainflow counting method for fatigue analysis. Int. J. Fatigue 16(4), 287–293 (1994)

    Article  Google Scholar 

  2. Bendsoe, M.P., Sigmund, O.: Topology Optimization: Theory, Methods, and Applications. Springer Science & Business Media (2004)

    Google Scholar 

  3. Bruns, T.E., Tortorelli, D.A.: Topology optimization of non-linear elastic structures and compliant mechanisms. Comput. Methods Appl. Mech. Eng. 190(26), 3443–3459 (2001)

    Article  Google Scholar 

  4. Collet, M., Bruggi, M., Duysinx, P.: Topology optimization for minimum weight with compliance and simplified nominal stress constraints for fatigue resistance. Struct. Multidiscip. Optim. 55(3), 839–855 (2017)

    Article  MathSciNet  Google Scholar 

  5. Dong, P.: A structural stress definition and numerical implementation for fatigue analysis of welded joints. Int. J. Fatigue 23(10), 865–876 (2001)

    Article  Google Scholar 

  6. Franchi, A., Genna, F., Riva, P.: Incremental Elastic-Ziegler kinematic hardening plasticity formulations and an algorithm for the numerical integration with an “a priori” error control. In: Grierson, D.E., Franchi, A., Riva, P. (eds.) Progress in Structural Engineering, pp. 407–421. Springer, Dordrecht (1991)

    Google Scholar 

  7. Gerzen, N., Clausen, P., Suresh, S., Pedersen, C.:. Fatigue sensitivities for sizing optimization of shell structures. In: 12th World Congress on Structural and Multidisciplinary Optimization (2017)

    Google Scholar 

  8. Haftka, R.T., Adelman, H.M.: Recent developments in structural sensitivity analysis. Struct. Optim. 1, 137–151 (1989)

    Article  Google Scholar 

  9. Holmberg, E., Torstenfelt, B., Klarbring, A.: Stress constrained topology optimization. Struct. Multidiscip. Optim. 48(1), 33–47 (2013)

    Article  MathSciNet  Google Scholar 

  10. Holmberg, E., Torstenfelt, B., Klarbring, A.: Fatigue constrained topology optimization. Struct. Multidiscip. Optim. 50(2), 207–219 (2014)

    Article  MathSciNet  Google Scholar 

  11. Holopainen, S., Kouhia, R., Saksala, T.: Continuum approach for modelling transversely isotropic high-cycle fatigue. Eur. J. Mech. A/Solids 60, 183–195 (2016)

    Article  MathSciNet  Google Scholar 

  12. Jeong, S.H., Lee, J.W., Yoon, G.H., Choi, D.H.: Topology optimization considering the fatigue constraint of variable amplitude load based on the equivalent static load approach. Appl. Math. Modell. 56, 626–647 (2018)

    Article  MathSciNet  Google Scholar 

  13. Kennedy, G.J., Hicken, J.E.: Improved constraint-aggregation methods. Comput. Methods Appl. Mech. Eng. 289, 332–354 (2015)

    Article  MathSciNet  Google Scholar 

  14. Oest, J., Overgaard, L.C.T., Lund, E.: Gradient based structural optimization with fatigue constraints of jacket structures for offshore wind turbines. In: 11th World Congress on Structural and Multidisciplinary Optimization, 7th–12th (2015)

    Google Scholar 

  15. Ottosen, N.S., Stenström, R., Ristinmaa, M.: Continuum approach to high-cycle fatigue modeling. Int. J. Fatigue 30(6), 996–1006 (2008)

    Article  Google Scholar 

  16. Michaleris, P., Tortorelli, D.A., Vidal, C.A.: Tangent operators and design sensitivity formulations for transient nonlinear coupled problems with applications to elastoplasticity. Int. J. Numer. Methods Eng. 37(14), 2471–2499 (1994)

    Google Scholar 

  17. Svanberg, K.: The method of moving asymptotes - a new method for structural optimization. Int. J. Numer. Methods Eng. 24(2), 359–373 (1987)

    Article  MathSciNet  Google Scholar 

  18. Torstenfelt, B.: (2012) The TRINITAS. https://www.solid.iei.liu.se/Offered_services/Trinitas

  19. Tortorelli, D.A., Michaleris, P.: Design sensitivity analysis: overview and review. Inverse Probl. Eng. 1(1), 71–105 (1994)

    Article  Google Scholar 

  20. van Keulen, F., Haftka, R.T., Kim, N.-H.: Review of options for structural design sensitivity analysis. Part 1: linear systems. Comput. Methods Appl. Mech. Eng. 194, 3213–3243 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

The work was performed within the AddMan project, funded by the Clean Sky 2 joint undertaking under the European Unions Horizon 2020 research and innovation programme under grant agreement No 738002, and within the Centre for Additive Manufacturing-Metal (CAM\(^2\)) financed by Sweden’s innovation agency under grant agreement No 2016-05175.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shyam Suresh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Suresh, S., Lindström, S.B., Thore, CJ., Torstenfelt, B., Klarbring, A. (2019). An Evolution-Based High-Cycle Fatigue Constraint in Topology Optimization. In: Rodrigues, H., et al. EngOpt 2018 Proceedings of the 6th International Conference on Engineering Optimization. EngOpt 2018. Springer, Cham. https://doi.org/10.1007/978-3-319-97773-7_73

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97773-7_73

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97772-0

  • Online ISBN: 978-3-319-97773-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics