Skip to main content

The Maize Pan-Genome

  • Chapter
  • First Online:
The Maize Genome

Abstract

The pan-genome of a species is comprised of genes/sequences that are present in all individuals in the species (core genome) and genes/sequences that are present in only a subset of individuals within the species (dispensable genome). In maize, the study of the pan-genome began in the 1940s through cytogenetic experiments and has seen an increased focus in research over the last decade largely driven by advances in genome sequencing technologies. It is estimated there are at least 1.5x as many genes in the pan-genome (greater than 60,000 genes) as there are in any individual’s genome (~40,000 genes), with even more variation outside the gene space being observed. This variation has been associated with phenotypic variation and is hypothesized to be an important contributor to the high levels of heterosis often observed in maize hybrids. Due to the high level of variation and the existing genetic and genomic resources, maize has become a model species for plant pan-genomics studies. This chapter will review the mechanisms that can create genome content variation, tools that are available to study the pan-genome, the history of maize pan-genome research ranging from the early cytogenetic studies to today’s genomics-based approaches, and the functional consequences of this variation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahn S, Tanksley SD (1993) Comparative linkage maps of the rice and maize genomes. Proc Natl Acad Sci USA 90:7980–7984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Albert PS, Gao Z, Danilova TV, Birchler JA (2010) Diversity of chromosomal karyotypes in maize and its relatives. Cytogenet Genome Res 129:6–16

    Article  CAS  PubMed  Google Scholar 

  • Alkan C, Coe BP, Eichler EE (2011) Genome structural variation discovery and genotyping. Nature 12:363–376

    CAS  Google Scholar 

  • Anderson JE, Kantar MB, Kono TY, et al (2014) A roadmap for functional structural variants in the soybean genome. G3-Genes Genom Genet 4:1307–1318

    Google Scholar 

  • Ayonoadu UW, Rees H (1971) Effects of B chromosomes on the nuclear phenotype in root meristems of maize. Heredity 27:365–383

    Article  Google Scholar 

  • Bejarano ER, Khashoggi A, Witty M, Lichtenstein C (1996) Integration of multiple repeats of geminiviral DNA into the nuclear genome of tobacco during evolution. Proc Natl Acad Sci USA 93:759–764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beló A, Beatty MK, Hondred D et al (2010) Allelic genome structural variations in maize detected by array comparative genome hybridization. Theor Appl Genet 120:355–367

    Article  CAS  PubMed  Google Scholar 

  • Bennetzen JL, Ramakrishna W (2002) Exceptional haplotype variation in maize. Proc Natl Acad Sci USA 99:9093–9095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennetzen JL, Wang H (2014) The contributions of transposable elements to the structure, function, and evolution of plant genomes. Annu Rev Plant Biol 65:505–530

    Article  CAS  PubMed  Google Scholar 

  • Berglund J, Nevalainen EM, Molin A-M et al (2012) Novel origins of copy number variation in the dog genome. Genome Biol 13:R73

    Article  PubMed  PubMed Central  Google Scholar 

  • Birchler JA, Veitia RA (2007) The gene balance hypothesis: from classical genetics to modern genomics. Plant Cell 19:395–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birchler JA, Veitia RA (2010) The gene balance hypothesis: implications for gene regulation, quantitative traits and evolution. New Phytol 186:54–62

    Article  CAS  PubMed  Google Scholar 

  • Birchler JA, Veitia RA (2012) Gene balance hypothesis: connecting issues of dosage sensitivity across biological disciplines. Proc Natl Acad Sci USA 109:14746–14753

    Article  PubMed  PubMed Central  Google Scholar 

  • Brohammer AB, Kono TJY, Springer NM et al (2018) The limited role of differential fractionation in genome content variation and function in maize (Zea mays L.) inbred lines. Plant J 93:131–141

    Article  CAS  PubMed  Google Scholar 

  • Brown WL (1949) Numbers and distribution of chromosome knobs in united states maize. Genetics 34:524–536

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brunner S, Fengler K, Morgante M et al (2005) Evolution of DNA sequence nonhomologies among maize inbreds. Plant Cell 17:343–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buckler ES, Gaut BS, McMullen MD (2006) Molecular and functional diversity of maize. Curr Opin Plant Biol 9:172–176

    Article  CAS  PubMed  Google Scholar 

  • Buescher PJ, Phillips RL, Brambl R (1984) Ribosomal RNA contents of maize genotypes with different ribosomal RNA gene numbers. Biochem Genet 22:923–930

    Article  CAS  PubMed  Google Scholar 

  • Burr B, Burr FA, Matz EC, Romero-Severson J (1992) Pinning down loose ends: mapping telomeres and factors affecting their length. Plant Cell 4:953–960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao J, Schneeberger K, Ossowski S et al (2011) Whole-genome sequencing of multiple Arabidopsis thaliana populations. Nat Genet 43:956–963

    Article  CAS  PubMed  Google Scholar 

  • Chia J-M, Song C, Bradbury PJ et al (2012) Maize HapMap2 identifies extant variation from a genome in flux. Nat Genet 44:803–807

    Article  CAS  PubMed  Google Scholar 

  • Computational Pan-Genomics Consortium (2016) Computational pan-genomics: status, promises and challenges. Brief Bioinformatics bbw089

    Google Scholar 

  • Cook DE, Lee TG, Guo X et al (2012) Copy number variation of multiple genes at Rhg1 mediates nematode resistance in soybean. Science 338:1206–1209

    Article  CAS  PubMed  Google Scholar 

  • Darracq A, Vitte C, Nicolas S et al (2018) Sequence analysis of European maize inbred line F2 provides new insights into molecular and chromosomal characteristics of presence/absence variants. BMC Genom 19:119

    Article  CAS  Google Scholar 

  • Dietrich CR, Perera MADN, D Yandeau-Nelson M, et al (2005) Characterization of two GL8 paralogs reveals that the 3-ketoacyl reductase component of fatty acid elongase is essential for maize (Zea mays L.) development. Plant J 42:844–861

    Google Scholar 

  • Díaz A, Zikhali M, Turner AS et al (2012) Copy number variation affecting the Photoperiod-B1 and Vernalization-A1 genes is associated with altered flowering time in wheat (Triticum aestivum). PLoS One 7:e33234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emrich SJ, Li L, Wen T-J et al (2007) Nearly identical paralogs: implications for maize (Zea mays L.) genome evolution. Genetics 175:429–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flavell RB (1986) Repetitive DNA and chromosome evolution in plants. Philos Trans R Soc London/Ser B 312:227–242

    Article  CAS  Google Scholar 

  • Force A, Lynch M, Pickett FB et al (1999) Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151:1531–1545

    CAS  PubMed  PubMed Central  Google Scholar 

  • Freeman VJ (1951) Studies on the virulence of bacteriophage-infected strains of Corynebacterium diphtheriae. J Bacteriol 61:675–688

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fu H, Dooner HK (2002) Intraspecific violation of genetic colinearity and its implications in maize. Proc Natl Acad Sci USA 99:9573–9578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gale MD, Devos KM (1998) Comparative genetics in the grasses. Proc Natl Acad Sci USA 95:1971–1974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaines TA, Zhang W, Wang D et al (2010) Gene amplification confers glyphosate resistance in amaranthus palmeri. Proc Natl Acad Sci USA 107:1029–1034

    Article  CAS  PubMed  Google Scholar 

  • Genomes Consortium (2016) 1,135 Genomes reveal the global pattern of polymorphism in arabidopsis thaliana. Cell 166:481–491

    Article  CAS  Google Scholar 

  • Golicz AA, Bayer PE, Barker GC et al (2016) The pangenome of an agronomically important crop plant Brassica oleracea. Nat Commun 7:13390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gore MA, Chia J-M, Elshire RJ et al (2009) A first-generation haplotype map of maize. Science 326:1115–1117

    Article  CAS  PubMed  Google Scholar 

  • Gordon SP, Contreras-Moreira B, Woods DP, Des Marais DL, Burgess D, Shu S, Stritt C, Roulin AC, Schackwitz W, Tyler L, Martin J (2017) Extensive gene content variation in the Brachypodium distachyon pan-genome correlates with population structure. Nature Commun 8:2184

    Article  CAS  Google Scholar 

  • Hake S, Walbot V (1980) The genome of Zea mays, its organization and homology to related grasses. Chromosoma 79:251–270

    Article  CAS  Google Scholar 

  • Han J-J, Jackson D, Martienssen R (2012) Pod corn is caused by rearrangement at the Tunicate1 locus. Plant Cell 24:2733–2744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansey CN, Vaillancourt B, Sekhon RS et al (2012) Maize (Zea mays L.) genome diversity as revealed by RNA-sequencing. PLoS One 7:e33071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haro von Mogel K, Hirsch CN, De Vries B et al (2013) The mapping, genetic analysis, and phenotypic characterization of sugary enhancer1 (se1). Maize Genet Conf Abs 55:T16

    Google Scholar 

  • Hirsch CN, Foerster JM, Johnson JM et al (2014) Insights into the maize pan-genome and pan-transcriptome. Plant Cell 26:121–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirsch CN, Hirsch CD, Brohammer AB et al (2016) Draft assembly of elite inbred line PH207 provides insights into genomic and transcriptome diversity in maize. Plant Cell 28:2700–2714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hogg JS, Hu FZ, Janto B et al (2007) Characterization and modeling of the haemophilus influenzae core and supragenomes based on the complete genomic sequences of Rd and 12 clinical nontypeable strains. Genome Biol 8:R103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunter CT, Saunders JW, Magallanes-Lundback M, Christensen SA, Willett D, Stinard PS, Li Q-B, Lee K, DellaPenna D, Koch KE (2018) Maize w3 disrupts homogentisate solanesyl transferase (ZmHst) and reveals a plastoquinone-9 independent path for phytoene desaturation and tocopherol accumulation in kernels. Plant J 93:799–813

    Article  CAS  PubMed  Google Scholar 

  • Jacq C, Miller JR, Brownlee GG (1977) A pseudogene structure in 5S DNA of xenopus laevis. Cell 12:109–120

    Article  CAS  PubMed  Google Scholar 

  • Jeffares DC, Jolly C, Hoti M et al (2017) Transient structural variations have strong effects on quantitative traits and reproductive isolation in fission yeast. Nat Commun 8:14061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiao Y, Peluso P, Shi J, et al (2017) Improved maize reference genome with single molecule technologies. bioRxiv

    Google Scholar 

  • Kaeppler SM (2012) Heterosis: many genes, many mechanisms—end the search for an undiscovered unifying theory. ISRN Bot. 2012:682824

    Google Scholar 

  • Kato A, Lamb JC, Birchler JA (2004) Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize. Proc Natl Acad Sci USA 101:13554–13559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato TAY (1976) Cytological studies of maize [Zea mays L.] and teosinte [Zea mexicana Schrader Kuntze] in relation to their origin and evolution. Univ. Mas. Agric. Expt. Sta

    Google Scholar 

  • Knox AK, Dhillon T, Cheng H et al (2010) CBF gene copy number variation at Frost Resistance-2 is associated with levels of freezing tolerance in temperate-climate cereals. Theor Appl Genet 121:21–35

    Article  PubMed  Google Scholar 

  • Koonin EV, Wolf YI (2008) Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world. Nucleic Acids Res 36:6688–6719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kyndt T, Quispe D, Zhai H et al (2015) The genome of cultivated sweet potato contains Agrobacterium T-DNAs with expressed genes: an example of a naturally transgenic food crop. Proc Natl Acad Sci USA 112:5844–5849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lai J, Li R, Xu X et al (2010) Genome-wide patterns of genetic variation among elite maize inbred lines. Nat Genet 42:1027–1030

    Article  CAS  PubMed  Google Scholar 

  • Lai J, Li Y, Messing J, Dooner HK (2005) Gene movement by helitron transposons contributes to the haplotype variability of maize. Proc Natl Acad Sci USA 102:9068–9073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langham RJ, Walsh J, Dunn M et al (2004) Genomic duplication, fractionation and the origin of regulatory novelty. Genetics 166:935–945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laurie DA, Bennett MD (1985) Nuclear DNA content in the genera zea and sorghum. intergeneric, interspecific and intraspecific variation. Heredity 55:307–313

    Article  Google Scholar 

  • Li R, Li Y, Zheng H et al (2010) Building the sequence map of the human pan-genome. Nat Biotechnol 28:57–63

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Xiao J, Wu J et al (2012) A tandem segmental duplication (TSD) in green revolution gene Rht-D1b region underlies plant height variation. New Phytol 196:282–291

    Article  CAS  PubMed  Google Scholar 

  • Li Y-H, Zhou G, Ma J et al (2014) De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits. Nat Biotechnol 32:1045–1052

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Ying K, Yeh C-T et al (2012) Changes in genome content generated via segregation of non-allelic homologs. Plant J 72:390–399

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Zheng J, Migeon P et al (2017) Unbiased K-mer analysis reveals changes in copy number of highly repetitive sequences during maize domestication and improvement. Sci Rep 7:42444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu F, Romay MC, Glaubitz JC et al (2015) High-resolution genetic mapping of maize pan-genome sequence anchors. Nat Commun 6:6914

    Article  CAS  PubMed  Google Scholar 

  • Maize Genetics and Genomics Database. Information about maize assembly Zm-Mo17-REFERENCE-NRGENE-1.0. In: maizegdb.org. http://maizegdb.org/genome/genome_assembly/Zm-Mo17-REFERENCE-NRGENE-1.0. Accessed 2 Jun 2017

  • Maize Genetics and Genomics Database. Information about maize assembly Zm-B104-DRAFT-ISU_USDA-0.1. In: maizegdb.org. https://maizegdb.org/genome/genome_assembly/Zm-B104-DRAFT-ISU_USDA-0.1. Accessed 2 Jun 2017

  • Maize Genetics and Genomics Database. Maize CML247. In: maizegdb.org. http://maizegdb.org/gbrowse/maize_cml247. Accessed 2 Jun 2017

  • Makarevitch I, Waters AJ, West PT et al (2015) Transposable elements contribute to activation of maize genes in response to abiotic stress. PLoS Genet 11:e1004915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maron LG, Guimarães CT, Kirst M et al (2013) Aluminum tolerance in maize is associated with higher MATE1 gene copy number. Proc Natl Acad Sci USA 110:5241–5246

    Article  PubMed  PubMed Central  Google Scholar 

  • McClintock B (1950) The origin and behavior of mutable loci in maize. Proc Natl Acad Sci USA 36:344–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McClintock B, Kato A, Blumenschein A (1981) Chromosome constitution of races of maize: its significance in the interpretation of relationship between races and varieties in the Americas. Mexico: Colegio de Postgraduados, p 517

    Google Scholar 

  • Medini D, Donati C, Tettelin H et al (2005) The microbial pan-genome. Curr Opin Genet Dev 15:589–594

    Article  CAS  PubMed  Google Scholar 

  • Messing J, Bharti AK, Karlowski WM et al (2004) Sequence composition and genome organization of maize. Proc Natl Acad Sci USA 101:14349–14354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyers BC, Tingey SV, Morgante M (2001) Abundance, distribution, and transcriptional activity of repetitive elements in the maize genome. Genome Res 11:1660–1676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michael TP, Jackson S (2013) The first 50 plant genomes. Plant Genome 6:2

    Article  Google Scholar 

  • Montenegro JD, Golicz AA, Bayer PE et al (2017) The pangenome of hexaploid bread wheat. Plant J 90:1007–1013

    Article  CAS  PubMed  Google Scholar 

  • Morgante M, Brunner S, Pea G et al (2005) Gene duplication and exon shuffling by helitron-like transposons generate intraspecies diversity in maize. Nat Genet 37:997–1002

    Article  CAS  PubMed  Google Scholar 

  • Näsvall J, Sun L, Roth JR, Andersson DI (2012) Real-time evolution of new genes by innovation, amplification, and divergence. Science 338:384–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nitcher R, Distelfeld A, Tan C et al (2013) Increased copy number at the HvFT1 locus is associated with accelerated flowering time in barley. Mol Genet Genomics 288:261–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohno S (1970) Evolution by gene duplication. Springer-Verlag, New York, USA

    Book  Google Scholar 

  • Peacock WJ, Dennis ES (1981) Highly repeated DNA sequence limited to knob heterochromatin in maize. Proc Natl Acad Sci USA 78:4490–4494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips RL, Weber DF, Kleese RA, Wang SS (1974) The Nucleolus organizer region of maize (Zea mays L.): tests for ribosomal gene compensation or magnification. Genetics 77:285–297

    CAS  PubMed  PubMed Central  Google Scholar 

  • Poggio L, Rosato M, Chiavarino AM, Naranjo CA (1998) Genome size and environmental correlations in maize (Zea mays ssp. mays, poaceae). Ann Bot 82:107–115

    Article  Google Scholar 

  • Rayburn AL, Price HJ, Smith JD, Gold JR (1985) C-Band Heterochromatin and DNA content in zea mays. Am J Bot 72:1610–1617

    Article  Google Scholar 

  • Rivin CJ, Cullis CA, Walbot V (1986) Evaluating quantitative variation in the genome of zea mays. Genetics 113:1009–1019

    CAS  PubMed  PubMed Central  Google Scholar 

  • Romero Navarro JA, Wilcox M, Burgueño J et al (2017) A study of allelic diversity underlying flowering-time adaptation in maize landraces. Nat Genet 49:476–480

    Article  CAS  PubMed  Google Scholar 

  • SanMiguel PJ, Bennetzen JL (1998) Evidence that a recent increase in maize genome size was caused by the massive amplification of intergene retrotransposons. Ann Bot 82:37–44

    Article  CAS  Google Scholar 

  • Schatz MC, Maron LG, Stein JC et al (2014) Whole genome de novo assemblies of three divergent strains of rice, Oryza sativa, document novel gene space of aus and indica. Genome Biol 15:506

    PubMed  PubMed Central  Google Scholar 

  • Schnable JC, Springer NM, Freeling M (2011) Differentiation of the maize subgenomes by genome dominance and both ancient and ongoing gene loss. Proc Natl Acad Sci USA 108:4069–4074

    Article  PubMed  PubMed Central  Google Scholar 

  • Schnable PS, Springer NM (2013) Progress toward understanding heterosis in crop plants. Annu Rev Plant Biol 64:71–88

    Article  CAS  PubMed  Google Scholar 

  • Schnable PS, Ware D, Fulton RS et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    Article  CAS  PubMed  Google Scholar 

  • Song R, Messing J (2003) Gene expression of a gene family in maize based on noncollinear haplotypes. Proc Natl Acad Sci USA 100:9055–9060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Springer NM, Ying K, Fu Y et al (2009) Maize inbreds exhibit high levels of copy number variation (CNV) and presence/absence variation (PAV) in genome content. PLoS Genet 5:e1000734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Studer A, Zhao Q, Ross-Ibarra J, Doebley J (2011) Identification of a functional transposon insertion in the maize domestication gene tb1. Nat Genet 43:1160–1163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sutton T, Baumann U, Hayes J et al (2007) Boron-toxicity tolerance in barley arising from efflux transporter amplification. Science 318:1446–1449

    Article  CAS  PubMed  Google Scholar 

  • Swanson-Wagner RA, Eichten SR, Kumari S et al (2010) Pervasive gene content variation and copy number variation in maize and its undomesticated progenitor. Genome Res 20:1689–1699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Syvanen M (2012) Evolutionary implications of horizontal gene transfer. Annu Rev Genet 46:341–358

    Article  CAS  PubMed  Google Scholar 

  • Tan B-C, Guan J-C, Ding S et al (2017) Structure and Origin of the White Cap Locus and its role in evolution of grain color in maize. Genetics 206:135–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang H, Bowers JE, Wang X et al (2008) Synteny and collinearity in plant genomes. Science 320:486–488

    Article  CAS  PubMed  Google Scholar 

  • Tenaillon MI, Hollister JD, Gaut BS (2010) A triptych of the evolution of plant transposable elements. Trends Plant Sci 15:471–478

    Article  CAS  PubMed  Google Scholar 

  • Tettelin H, Masignani V, Cieslewicz MJ et al (2005) Genome analysis of multiple pathogenic isolates of streptococcus agalactiae: implications for the microbial “pan-genome”. Proc Natl Acad Sci USA 102:13950–13955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tettelin H, Riley D, Cattuto C, Medini D (2008) Comparative genomics: the bacterial pan-genome. Curr Opin Microbiol 11:472–477

    Article  CAS  PubMed  Google Scholar 

  • Tikhonov AP, SanMiguel PJ, Nakajima Y et al (1999) Colinearity and its exceptions in orthologous adh regions of maize and sorghum. Proc Natl Acad Sci USA 96:7409–7414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torres EM, Williams BR, Amon A (2008) Aneuploidy: cells losing their balance. Genetics 179:737–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Unterseer S, Seidel MA, Bauer E, Haberer G (2017) European flint reference sequences complement the maize pan-genome. bioRxiv

    Google Scholar 

  • Van de Peer Y, Mizrachi E, Marchal K (2017) The evolutionary significance of polyploidy. Nat Rev Genet 408:796

    Google Scholar 

  • Vielle-Calzada J-P, Martínez de la Vega O, Hernández-Guzmán G, et al (2009) The Palomero genome suggests metal effects on domestication. Science 326:1078–1078

    Google Scholar 

  • Wallace JG, Bradbury PJ, Zhang N et al (2014) Association mapping across numerous traits reveals patterns of functional variation in maize. PLoS Genet 10:e1004845

    Article  PubMed  PubMed Central  Google Scholar 

  • Wetterstrand KA (2018) DNA sequencing costs: Data from the NHGRI genome sequencing program (GSP). www.genome.gov/sequencingcostsdata. Accessed 17 Apr

  • Whitkus R, Doebley J, Lee M (1992) Comparative genome mapping of sorghum and maize. Genetics 132:1119–1130

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wingen LU, Münster T, Faigl W et al (2012) Molecular genetic basis of pod corn (Tunicate maize). Proc Natl Acad Sci USA 109:7115–7120

    Article  PubMed  PubMed Central  Google Scholar 

  • Winzer T, Gazda V, He Z et al (2012) A papaver somniferum 10-gene cluster for synthesis of the anticancer alkaloid noscapine. Science 336:1704–1708

    Article  CAS  PubMed  Google Scholar 

  • Woodhouse MR, Schnable JC, Pedersen BS et al (2010) Following tetraploidy in maize, a short deletion mechanism removed genes preferentially from one of the two homeologs. PLoS Biol 8:e1000409–e1000415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Würschum T, Longin CFH, Hahn V et al (2017) Copy number variations of CBF genes at the Fr-A2 locus are essential components of winter hardiness in wheat. Plant J 89:764–773

    Article  CAS  PubMed  Google Scholar 

  • Xiao H, Jiang N, Schaffner E et al (2008) A retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit. Science 319:1527–1530

    Article  CAS  PubMed  Google Scholar 

  • Yandeau-Nelson MD, Xia Y, Li J et al (2006) Unequal sister chromatid and homolog recombination at a tandem duplication of the A1 locus in maize. Genetics 173:2211–2226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yandeau-Nelson MD, Zhou Q, Yao H et al (2005) MuDR transposase increases the frequency of meiotic crossovers in the vicinity of a mu insertion in the maize a1 gene. Genetics 169:917–929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao W, Li G, Zhao H et al (2015) Exploring the rice dispensable genome using a metagenome-like assembly strategy. Genome Biol 16:187

    Article  PubMed  PubMed Central  Google Scholar 

  • Yona AH, Manor YS, Herbst RH et al (2012) Chromosomal duplication is a transient evolutionary solution to stress. Proc Natl Acad Sci USA 109:21010–21015

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoshida S, Maruyama S, Nozaki H, Shirasu K (2010) Horizontal gene transfer by the parasitic plant Striga hermonthica. Science 328:1128–1128

    Google Scholar 

  • Young ND, Zhou P, Silverstein KA (2016) Exploring structural variants in environmentally sensitive gene families. Curr Opin Plant Biol 30:19–24

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Mao L, Chen H et al (2015) Genome-wide mapping of structural variations reveals a copy number variant that determines reproductive morphology in cucumber. Plant Cell 27:1595–1604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou P, Silverstein KAT, Ramaraj T et al (2017) Exploring structural variation and gene family architecture with de novo assemblies of 15 medicago genomes. BMC Genom 18:261

    Article  CAS  Google Scholar 

  • Zhu J, Pearce S, Burke A et al (2014) Copy number and haplotype variation at the VRN-A1 and central FR-A2 loci are associated with frost tolerance in hexaploid wheat. Theor Appl Genet 127:1183–1197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded in part by the National Science Foundation (Grant IOS-1546727) and ABB was supported by the DuPont Pioneer Bill Kuhn Honorary Fellowship and the University of Minnesota MnDRIVE Global Food Ventures Graduate Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Candice N. Hirsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brohammer, A.B., Kono, T.J.Y., Hirsch, C.N. (2018). The Maize Pan-Genome. In: Bennetzen, J., Flint-Garcia, S., Hirsch, C., Tuberosa, R. (eds) The Maize Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-319-97427-9_2

Download citation

Publish with us

Policies and ethics