Skip to main content

Breeding and Genomic Approaches for Climate-Resilient Garlic

  • Chapter
  • First Online:
Genomic Designing of Climate-Smart Vegetable Crops

Abstract

Garlic (Allium sativum L.) has a long history of cultivation by asexual propagation. Due to its asexual nature, improvement of garlic has been limited as compared to onion. With the impending climate change, it is predicted that like all other crops, garlic cultivation will also suffer the consequences. Ninety percent of garlic is grown in Asia and increase in temperature will expose garlic to various biotic and abiotic stresses. To evolve against these stresses, quality improvement of garlic to withstand these stresses is of principal concern. Research work on creation of genetic diversity, collection of genetic resources, interspecific hybridization, and manipulation of flowering is needed through conventional techniques. Biotechnological approaches for garlic improvement through genetic transformation, marker-assisted selection, genomics-aided breeding, and other novel technologies may help in achieving higher yields under climate change scenarios. In this chapter, we have discussed various approaches and what has been done in these areas in different parts of the world to address the loss in crop yield which is likely to be caused by the biotic and abiotic stresses in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelrahman M, Abdel-Motaal F, El-Sayed M, Jogaiah S, Shigyo M, Ito S, Tran LS (2016) Dissection of Trichoderma longibrachiatum induced-defense in onion (Allium cepa L.) against Fusariumoxysporum f. sp. cepae by target metabolite profiling. Plant Sci 246: 128e138

    Article  CAS  PubMed  Google Scholar 

  • Abdelrahman M, El-Sayed M, Sato S, Hirakawa H, Ito SI, Tanaka K, Mine Y, Sugiyama N, Suzuki M, Yamauchi N, Shigyo M (2017) RNA-sequencing-based transcriptome and biochemical analyses of steroidal saponin pathway in a complete set of Allium fistulosum-A. cepa monosomic addition lines. PLoS One 12:e0181784

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Abdelrahman M, Hirata S, Sawada Y, Hirai MY, Sato S, Hirakawa H, Mine Y, Tanaka K, Shigyo M (2019) Widely targeted metabolome and transcriptome landscapes of Allium fistulosumA. cepa chromosome addition lines revealed a flavonoid hot spot on chromosome 5A. Sci Rep 9: 3541

    Google Scholar 

  • Abo El-Nil MM (1977) Organogenesis and embryogenesis in callus culture of garlic (Allium sativum L.). Plant Sci Lett 9:259–264

    Article  CAS  Google Scholar 

  • Ahn YK, Yoon MK and Jeon JS (2013) Development of an efficient Agrobacterium-mediated transformation system and production of herbicide-resistant transgenic plants in garlic (Allium sativum L.). Mol Cells 36(2):158–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Safadi B, Mir AN and Arabi MIE (2000) Improvement of garlic (Allium sativum L.) resistance to white rot and storability using gamma irradiation induced mutations. J Genet Breed 54(3):175–182

    Google Scholar 

  • Al-Zahim MA, Ford-Lloyd BV and Newbury HJ (1999) Detection of somaclonal variation in garlic (Allium sativum L.) using RAPD and cytological analysis. Plant Cell Rep 18(6):473–477

    Article  CAS  Google Scholar 

  • Arencibia AD, Carmona ER, Teller P, Chan MT, Yu SM, LE Trujilo S, Oamas P (1988) An efficient protocol for sugarcane (Saccharrum spp. L.) transformation mediated by Agrobacterium tumefaciens. Transgen Res 7:213–222

    Article  Google Scholar 

  • Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9(3):208–218

    Article  CAS  Google Scholar 

  • Ayabe M, Sumi S (2001) A novel and efficient tissue culture method—”stem-disc dome culture”—for producing virus-free garlic (Allium sativum L.). Plant Cell Rep 20:503–507

    Article  CAS  Google Scholar 

  • Badran AE (2015) Comparative analysis of some garlic varieties under drought stress conditions. J Agri Sci 7(10):271

    Google Scholar 

  • Baitulin IO, Agafonova G, Rabinowitch HD, Kamenetsky R (2000) Creation of gene bank of Central Asian species of the genus Allium L., their biology and economic potential (in Russian). In: Granovsky EI, Fain EE (eds) State and perspectives of scientific collaboration Kazakhstan-Israel. Kazakhstan, Almaty, pp 87–94

    Google Scholar 

  • Barandiaran X, di Pietro A, Martin J, Di Pietro A (1998) Biolistic transfer and expression of a uidA reporter gene in different tissues of Allium sativum L. Plant Cell Rep 17(9):737–741

    Article  CAS  PubMed  Google Scholar 

  • Bennett MD, Leitch IJ (2012) Plant DNA C-values database (release 6.0). 27 Oct 2015. http://www.kew.org/cvalues/

  • Bevan M, Waugh R (2007) Applying plant genomics to crop improvement. BioMed Central, London, UK

    Google Scholar 

  • Bideshki A, Arvin MJ, Darini M (2013) Interactive effects of Indole-3-butyric acid (IBA) and salicylic acid (SA) on growth parameters, bulb yield and allicin contents of garlic (Allium sativum) under drought stress in field. Intl J Agron Plant Product 4(2):271–279

    Article  CAS  Google Scholar 

  • Bradley KF, Rieger MA, Collins GG (1996) Classification of Australian garlic cultivars by DNA fingerprinting. Aust J Exp Agri 36:613–618

    Article  CAS  Google Scholar 

  • Brewster JL (1994) Onions and other vegetable Alliums. CAB International, Wallingford, UK

    Google Scholar 

  • Burba JL, Casali VW, Buteler MI (1993) Intensidad de la dormicioncomoparametrofisiologico para agruparcultivares de ajo (Allium sativum L.). Hort Argen 12(32):47–52

    Google Scholar 

  • Buso GS, Paiva MR, Torres AC, Resende FV, Ferreira MA, Buso JA, Dusi AN (2008) Genetic diversity studies of Brazilian garlic cultivars and quality control of garlic-clover production. Genet Mol Res 7:534–541

    Article  CAS  PubMed  Google Scholar 

  • Cavagnaro PF, Camargo A, Piccolo RJ, Lampasona SG, Burba JL, Masuelli RW (2005a) Resistance to Penicillium hirsutum Dierckx in garlic accessions. Eur J Plant Pathol 112(2):195–199

    Article  Google Scholar 

  • Cavagnaro PF, Senalik D, Galmarini CR, Simon PW (2005b) Correlation of pungency, thiosulfinates, antiplatelet activity and total soluble solids in two garlic families. Annu Conf HortScience 40(4):1019

    Article  Google Scholar 

  • Chen S, Zhou J, Chen Q, Chang Y, Du J, Meng H (2013) Analysis of the genetic diversity of garlic (Allium sativum L.) germplasm by SRAP. Biochem Syst Ecol 50:139–146

    Article  CAS  Google Scholar 

  • Chen S, Chen W, Shen X, Yang Y, Qi F, Liu Y, Meng H (2014) Analysis of the genetic diversity of garlic (Allium sativum) by simple sequence repeat and inter simple sequence repeat analysis and agro-morphological traits. Biochem Syst Ecol 55:260–267

    Article  CAS  Google Scholar 

  • Conci V, Nome S (1991) Virus free garlic (Allium sativum L.) plants obtained by thermotherapy and meristem-tip culture. J Phytopathol 132:186–192

    Article  Google Scholar 

  • Conci V, Nome SF, Milne RG (1992) Filamentous viruses of garlic in Argentina. Plant Dis 76:594–596

    Article  Google Scholar 

  • Csiszár J, Lantos E, Tari I, Madosa E, Wodala B, Vashegy A, Horváth F, Pécsváradi A, Szabó M, Bartha B, Gallé Á (2007) Antioxidant enzyme activities in Allium species and their cultivars under water stress. Plant Soil Environ 53(12):517

    Article  Google Scholar 

  • Cunha CP, Hoogerheide ESS, Zucchi MI, Monteiro M, Pinheiro JB (2012) New microsatellite markers for garlic Allium sativum (Alliaceae). Amer J Bot 99:17–19

    Article  Google Scholar 

  • Cunha CP, Resende FV, Zucchi MI, Pinheiro JB (2014) SSR-based genetic diversity and structure of garlic accessions from Brazil. Genetica 142:419–431

    Article  PubMed  CAS  Google Scholar 

  • Diriba-Shiferaw G (2016) Review of management strategies of constraints in garlic (Allium sativum L.) production. J Agri Sci–Sri Lanka 11(3):186–207

    Article  Google Scholar 

  • Duangjit J, Bohanec B, Chan AP, Town CD, Havey MJ (2013) Transcriptome sequencing to produce SNP-based genetic maps of onion. Theor Appl Genet 126:2093–2101. https://doi.org/10.1007/s00122-013-2121-x

    Article  CAS  PubMed  Google Scholar 

  • Dugan FM (2007) Diseases and disease management in seed garlic: problems and prospects. Amer J Plant Sci Bioctechnol. 1:47–51

    Google Scholar 

  • Eady CC, Lister CE, Suo Y, Schaper D (1996) Transient expression of uidA constructs in in vitro onion (Allium cepa L.) cultures following particle bombardment and Agrobacterium-mediated DNA delivery. Plant Cell Rep 15:958–962

    CAS  PubMed  Google Scholar 

  • Eady C, Davis S, Farrant J, Reader J, Kenel F (2003) Agrobacterium tumefaciens-mediated transformation and regeneration of herbicide resistant onion (Allium cepa L.) plants. Ann Appl Biol 142:213–217

    Article  CAS  Google Scholar 

  • Eady CC, Davis S, Catanach A, Kenel F, Hunger S (2005) Agrobacterium tumefaciens-mediated transformation of leek (Allium porrum) and garlic (Allium sativum). Plant Cell Rep 24:209–215

    Article  CAS  PubMed  Google Scholar 

  • Ebi M, Kasai N, Masuda K (2000) Small inflorescence bulbils are best for micropropagation and virus elimination in garlic. HortScience 35:735–737

    Article  Google Scholar 

  • Egea LA, Mérida-García R, Kilian A, Hernandez P, Dorado G (2017) Assessment of geneticdiversity and structure of largegarlic (Allium sativum) germplasmbank by diversityarraystechnology “Genotyping-by-Sequencing” platform (DArTseq). Front Genet 8:98. https://doi.org/10.3389/fgene.2017.00098

    Article  PubMed  PubMed Central  Google Scholar 

  • Etoh T (1985) Studies on the sterility in garlic, Allium sativum L. Mem Fac Agri Kagoshima Univ 21:77–132

    Google Scholar 

  • Etoh T, Simon PW (2002) Diversity, fertility and seed production of garlic. In: Rabinowitch HD, Currah L (eds) Allium crop science: recent advances. CABI, New York, pp 101–107

    Chapter  Google Scholar 

  • Etoh T, Watanabe H, Iwai S (2001) RAPD variation of garlic clones in the center of origin and the westernmost area of distribution. Mem Fac Agr Kagoshima Univ 37:21–27

    CAS  Google Scholar 

  • FAOSTAT (2012) http://faostat3.fao.org/faostat-gateway/go/to/download/Q/QC/E

  • Ferrer E, Linares C, Gonzalez JM (2000) Efficient transient expression of the beta-glucuronidase reporter gene in garlic (Allium sativum L.). Agronomie 20:869–874

    Article  Google Scholar 

  • Fortiz EL, Paz AR, Espinosa1 MAG, Mascorro-Gallardo JM, Rangel EE (2013) Genetic transformation of garlic (Allium sativum L.) with tobacco chitinase and glucanase genes for tolerance to the fungus Sclerotium cepivorum. Afr J Biotechnol 12(22):3482–3492 https://doi.org/10.5897/ajb2013.12056

  • Francois LE (1994) Yield and quality response of salt-stressed garlic. Hort Sci 29:1314–1317

    Article  Google Scholar 

  • Fritsch R (2001) Taxonomy of the genus Allium: Contribution from IPK Gatersleben. Herbertia 56:19–50

    Google Scholar 

  • García-Lampasona S, Asprelli P, Burba JL (2012) Genetic analysis of a garlic (Allium sativum L.) germplasm collection from Argentina. Sci Hort 138:183–189

    Article  Google Scholar 

  • Gore MA, Wright MH, Ersoz ES, Bouffard P, Szekeres ES, Jarvie TP, Hurwitz BL, Narechania A, Harkins TT, Grills GS, Ware DH, Buckler ES (2009) Large-scale discovery of gene enriched SNPs. Plant Genome 2:121–133

    Article  CAS  Google Scholar 

  • Haque MS, Hattori K (2017) Detection of viruses of Bangladeshi and Japanese garlic and their elimination through root meristem culture. Progressive Agric 28:55–63

    Article  Google Scholar 

  • Havey MJ, Ahn YK (2016) Single nucleotide polymorphisms and indel markers from the transcriptome of garlic. J Amer Soc Hort Sci 141(1):62–65

    Article  CAS  Google Scholar 

  • Hedrick UP (1972) Sturtevant’s Edible Plants of the World. Dover Publications. ISBN0-486-20459-6

    Google Scholar 

  • Hiei Y, Komari T, Kubo T (1997) Transformation of rice mediated by Agrobacterium tumefaciens. Plant Mol Biol 35:1–2

    Article  Google Scholar 

  • Hirata S, Abdelrahman M, Yamauchi N, Shigyo M (2016a) Diversity evaluation based on morphological, physiological and isozyme variation in genetic resources of garlic (Allium sativum L.) collected worldwide. Genes Genet Syst 91:161–173

    Article  CAS  PubMed  Google Scholar 

  • Hirata S, Abdelrahman M, Yamauchi N, Shigyo M (2016b) Characteristics of chemical components in genetic resources of garlic Allium sativum collected from all over the world. Genet Resour Crop Evol 63:35–45

    Article  CAS  Google Scholar 

  • Hornickova J, Velisek J, Ovesna J, Stavelikova H (2009) Distribution of S-alk(en)yl-L-cysteine sulfoxides in garlic (Allium sativum L.). Czech J Food Sci 27:232–235

    Article  Google Scholar 

  • Insunza V, Valenzuela A (1995) Control of Ditylenchus dipsaci on garlic (Allium sativum) with extracts of medicinal plants from Chile. Nematropica 25:35–41

    Google Scholar 

  • Ipek M, Ipek A, Simon PW (2003) Comparison of AFLPs, RAPD markers, and isozymes for diversity assessment of garlic and detection of putative duplicates in germplasm collections. J Amer Soc Hort Sci 128:24–252

    Article  Google Scholar 

  • Ipek M, Ipek A, Almquist SG, Simon PW (2005) Demonstration of linkage and development of the first low-density genetic map of garlic based on AFLP markers. Theor Appl Genet 110:22–236

    Article  CAS  Google Scholar 

  • Ipek M, Ipek A, Simon PW (2008) Rapid characterization of garlic clones with locus-specific DNA markers. Turk J Agri For 32:357–362

    CAS  Google Scholar 

  • Ipek M, Sahin N, Ipek A, Cansev A, Simon PW (2015) Development and validation of new SSR markers from expressed regions in the garlic genome. Sci Agri 72:41–46. https://doi.org/10.1590/0103-9016-2014-0138

    Article  CAS  Google Scholar 

  • Jabbes N, Geoffriau E, Le Clerc V, Dridi B, Hannechi C (2011) Inter simple sequence repeat fingerprints for assess genetic diversity of Tunisian garlic populations. J Agri Sci 3:77–85

    Google Scholar 

  • Jardinaud MF, Souvre A, Alibert G (1993) Transient GUS gene expression in Brassica napus electroporated microspores. Plant Sci 93:177–184

    Article  CAS  Google Scholar 

  • Jo M, Ham I, Moe K, Kwon S, Lu F, Park Y, Kim W, Won M, Kim T, Lee E (2012) Classification of genetic variation in garlic (Allium sativum L.) using SSR markers. Aust J CropSci 6:625–631

    CAS  Google Scholar 

  • Jones HA, Mann LK (1963) Onions and Their Allies. Leonard Hill Books, London

    Google Scholar 

  • Jones MG, Hughes J, Tregova A, Milne J, Tomsett AB, Collin HA (2004) Biosynthesis of the flavour precursors of onion and garlic. J Exp Bot 55(404):1903–1918

    Article  CAS  PubMed  Google Scholar 

  • Kamenetsky R (1993) A living collection of Allium in Israel—problems of conservation and use. Diversity 9:24–26

    Google Scholar 

  • Kamenetsky R (2007) Garlic: botany and horticulture. Hort Rev 33:123–171

    CAS  Google Scholar 

  • Kamenetsky R, Rabinowitch DH (2001) Floral development in bolting garlic. Sexual Plant Reprod 13:23–241

    Article  Google Scholar 

  • Kamenetsky R, Rabinowitch HD (2002) Florogenesis. In: Rabinowitch HD, Currah L (eds) Allium Crop Sciences: Recent Advances. CAB International, Wallingford, UK, pp 31–57

    Chapter  Google Scholar 

  • Kamenetsky R, London Shafir I, Baizerman M, Khassanov F, Kik C, Rabinowitch HD (2004) Garlic (Allium sativum L.) and its wild relatives from Central Asia: evaluation for fertility potential. Acta Hort 637:83–91

    Article  Google Scholar 

  • Kamenetsky R, London Shafir I, Khassanov F, Kik C, van Heusden AW, Vrielink-van Ginkel M, Burger-Meijer K, Auger J, Arnault I, Rabinowitch HD (2005a) Diversity in fertility potential and organo-sulphur compounds among garlics from Central Asia. Biodivers Conserv 14:281–295

    Article  Google Scholar 

  • Kamenetsky R, London ShafirI, Khassanov F, Kik C, Van Heusden AW, Vrielink-Van Ginkel M, Burger-Meijer K, Auger J, Arnault I, Rabinowitch HD (2005b) Diversity in fertility potential and organo-sulphur compounds among garlics from Central Asia. Biodivers Conserv 14(2): 281–295.

    Article  Google Scholar 

  • Kamenetsky R, Faigenboim A, Mayer E, Michael T, Gershberg Ch, Kimhi S, Esquira I, Shalom S, Eshe D, Rabinowitch HD, ShermanA (2015) Integrated transcriptome catalogue and organ-specific profiling of gene expression in fertile garlic (Allium sativum L.). BMC Genomics 16:12

    Google Scholar 

  • Kehr AE, Schäffer GW (1976) Tissue culture and differentiation in garlic. HortScience 11:422–423

    Google Scholar 

  • Keller ERJ (2002) Cryopreservation of Allium sativum L. (Garlic). In: Towill LE, Bajaj YPS (eds) Cryopreservation of Plant Germplasm, vol 2. Springer, Berlin Heidelberg, Germany, pp 37–47

    Chapter  Google Scholar 

  • Keller ERJ, Senula A (2001) Progress in structuring and maintaining the garlic (Allium sativum) diversity for the European genres project. Acta Hort 555:189–193

    Article  Google Scholar 

  • Keller ERJ, Schubert L, Fuchs J (1996) Interspecific crosses of onion with distant Allium species and characterization of the presumed hybrids by means of flow cytometry, karyotype analysis and genomic in situ hybridization. Theor Appl Genet 92:417–424

    Article  CAS  PubMed  Google Scholar 

  • Kenel F, Eady C, Brinch S (2010) Efficient Agrobacterium tumefaciens-mediated transformation and regeneration of garlic (Allium sativum) immature leaf tissue. Plant Cell Rep 29:223–230

    Article  CAS  PubMed  Google Scholar 

  • Keurentjes JJ, Koornneef M, Vreugdenhil D (2008) Quantitative genetics in the age of omics. Curr Opin Plant Biol 11:123–128

    Article  CAS  PubMed  Google Scholar 

  • Khanna HK, Raina SK (1999) Agrobacterium mediated transformation of Indica rice cultivars using binary and superbinary vectors. Aust J Plant Physiol 26:311–324

    CAS  Google Scholar 

  • Khar A (2012) Cross amplification of onion derived microsatellites and mining of garlic ESTdatabase for assessment of genetic diversity in garlic. Acta Hort 969:289–295

    Article  Google Scholar 

  • Khar A, Yadav RC, Yadav N, Bhutáni RD (2005) Transient gus expression studies in onion (Allium cepa L.) and garlic (Allium sativum L.). Akdeniz Universitesi Ziraat Fakultesi Dergisi 18:301–304

    Google Scholar 

  • Khar A, Asha Devi A, Lawande KE (2008) Analysis of genetic relationships among Indian garlic (Allium sativum L.) cultivars and breeding lines using RAPD markers. Indian J Genet 68:52–57

    CAS  Google Scholar 

  • Kim DW, Jung TS, Nam SH, Kwon HR, Kim A, Chae SH, Choi SH, Kim DW, Kim RN, Park HS (2009) GarlicESTdb: an online database and mining tool for garlic EST sequences. BMC Plant Biol 9(1):61

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • King AM, Adams MJ, Lefkowitz E J, Carstens EB (Eds) (2012) Virus taxonomy: classification and nomenclature of viruses: ninth report of the international committee on taxonomy of viruses. Elsevier

    Google Scholar 

  • Kondo T, Hasegawa H, Suszuki M (2000) Transformation and regeneration of garlic (Allium sativum L.) by Agrobacterium-mediated gene transfer. Plant Cell Rep 19:989–993

    Article  CAS  PubMed  Google Scholar 

  • Kuhl JC, Cheung F, Yuan Q, Martin W, Zewdie Y, McCallum J, Catanach A, Rutherford P, Sink KC, Jenderek M, Prince JP, Town CD, Havey MJ (2004) A unique set of 11,008 onion (Allium cepa) ESTs reveals expressed sequence and genomic differences between monocot orders Asparagales and Poales. Plant Cell 16:114–125

    Article  PubMed  PubMed Central  Google Scholar 

  • Lafarge T, Bueno C, Frouin J, Jacquin L, Courtois B, Ahmadi N (2017) Genome-wide association analysis for heat tolerance at flowering detected a large set of genes involved in adaptation to thermal and other stresses. PLoS ONE 12:e0171254

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lamichhane JR, Barzman M, Booij K, Boonekamp P, Desneux N, Huber L, Kudsk P, Langrell SR, Ratnadass A, Ricci P, Sarah JL (2015) Robust cropping systems to tackle pests under climate change. A review. Agron Sustain Dev 35(2):443–459

    Article  Google Scholar 

  • Lampasona GS, Martınez L, Burba JL (2003) Genetic diversity among selected Argentinean garlic clones (Allium sativum L.) using AFLP (Amplified Fragment Length Polymorphism). Euphytica 132:115–119

    Article  Google Scholar 

  • Liu QQ, Zhang JL Wang ZY, Hong MM, Gu MH (1998) A highly efficient transformation system mediated by Agrobacterium tumefaciens in rice (Oryza sativa L.). Acta Phytophysiol Sin 24:259–271

    Google Scholar 

  • Lu X, Ross CF, Powers JR, Aston DE, Rasco BA (2011) Determination of total phenolic content and antioxidant activity of garlic (Allium sativum) and elephant garlic (Allium ampeloprasum) by attenuated total reflectance-fourier transformed infrared spectroscopy. J Agri Food Chem 59:5215–5221

    Article  CAS  Google Scholar 

  • Ma Y, Wang HL, Zhang CJ, Kang YQ (1994) High rate of virus free plantlet regeneration via garlic scape tip culture. Plant Cell Rep 11:65–68

    Google Scholar 

  • Ma KH, Gwag JG, Zhao WG, Dixit A, Lee GA, Kim HH, Chung IM, Kim NS, Lee JS, Ji JJ (2009) Isolation and characteristics of eight novel polymorphic microsatellite loci from the genome of garlic (Allium sativum L.). Sci Hort 122:355–361

    Article  CAS  Google Scholar 

  • Maas EV, Hoffman GJ (1977) Crop salt tolerance—current assessment. J Irrig Drain Eng 103:115–134

    Google Scholar 

  • Maaß HI, Klaas M (1995) Intraspecific differentiation of garlic (Allium sativum L.) by isozyme and RAPD markers. Theor Appl Genet 91:89–97

    Article  PubMed  Google Scholar 

  • Mangal JL, Singh RK, YadavAC Lal S, Pandey UC (1990) Evaluation of garlic cultivars for salinity tolerance. J Hort Sci 65(6):657–658

    Article  Google Scholar 

  • Manolio TA (2010) Genome wide association studies and assessment of the risk of disease. N Engl J Med 363:166–176

    Article  CAS  PubMed  Google Scholar 

  • Martin WJ, McCallum J, Shigyo M, Jakse J, Kuhl JC, Yamane N, Pither-Joyce M, Gokce AF, Sink KC, Town CD, Havey MJ (2005) Genetic mapping of expressed sequences in onion and in silico comparisons with rice show scant colinearity. Mol Genet Genom 274:197

    Article  CAS  Google Scholar 

  • Mishra RK, Jaiswal RK, Kumar D, Saabale PR, Singh A (2014) Management of major diseases and insect pests of onion and garlic: a comprehensive review. J Plant Breed Crop Sci 6(11):160–170

    Article  Google Scholar 

  • Mostafa A, Sudisha J, El-Sayed M, Ito SI, Ikeda T, Yamauchi N, Shigyo M (2013) Aginsodie saponin a potent antifungal compound, and secondary metabolite analyses from Allium nigrum L. Phytochem Lett 6:274–280

    Article  CAS  Google Scholar 

  • Mousavi-Derazmahalleh M, Bayer PE, Hane JK, Babu V, Nguyen HT, Nelson MN, Erskine W, Varshney RK, Papa R, Edwards D (2018) Adapting legume crops to climate change using genomic approaches. Plant, Cell Environ 42:6–19

    Article  CAS  Google Scholar 

  • Moyer S (1996) Garlic in health history and world cuisine. Suncoast Press, St. Petrsberg, FL, pp 1–36

    Google Scholar 

  • Nabulsi I, Al-Safadi B, Ali NM, Arabi MIE (2001) Evaluation of some garlic (Allium sativum L.) mutants resistant to white rot disease by RAPD analysis. Ann Appl Biol 138(2): 197–202

    Article  CAS  Google Scholar 

  • Nanda S, Chand SK, Mandal P, Tripathy P, Joshi RK (2016) Identification of novel source of resistance and differential response of Allium genotypes to purple blotch pathogen, Alternaria porri (Ellis) Ciferri. Plant Pathol J 32(6):519

    Article  PubMed  PubMed Central  Google Scholar 

  • Newman T, de Bruijin FJ, Green P, Keegstra K, Kende H, McIntosh L, Ohlrogge J, Raikhel N, Somerville S, Thomashow M, Retzel E, Somerville C (1994) Genes galore: a summary of methods for accessing results from large-scale partial sequencing of anonymous Arabidopsis cDNA clones. Plant Physiol 106:1241–1255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novak FJ (1990) Allium tissue culture. In: Rabinowitch HD, Brewster JL (eds) Onions and allied crops, Vol II. CRC Press, Boca Raton, FL, USA, pp 233–250

    Google Scholar 

  • Novák FJ (1980) Phenotype and cytological status of plants regenerated from callus cultures of Allium sativum L. Z Pflanzenzeucht 84:250

    Google Scholar 

  • Ovesna J, Kucera L, Hornickova J, Svobodova L, Stavelikova H, Velisek J, Milella L (2011) Diversity of S-alk(en)yl cysteine sulphoxide content within a collection of garlic (Allium sativum L.) and its association with the morphological and genetic background assessed by AFLP. Sci Hort 129:541–547

    Article  CAS  Google Scholar 

  • Ovesná J, Leišová-Svobodová L, Kučera L (2014) Microsatellite analysis indicates the specific genetic basis of Czech bolting garlic. Czech J Genet Plant Breed 50:226–234

    Article  Google Scholar 

  • Panse R, Jain PK, Gupta A, Sasode DS (2013) Morphological variability and character association in diverse collection of garlic germplasm. Afr J Agri Res 8(23):2861–2869

    Google Scholar 

  • Park MY, Yi NR, Lee HY, Kim ST, Kim M, Park JH, Kim JK, Lee JS, Cheong JJ, Choi YD (2002) Generation of chlorsulfuron-resistant transgenic transgenic garlic plants (Allium sativum L.) by particle bombardment. Mol Breed 9:171–181

    Article  CAS  Google Scholar 

  • Peffley EB, Hou A (2000) Bulb-type onion introgressants possessing Allium fistulosum L. genes recovered from interspecific hybrid backcrosses between A. cepa L. and A. fistulosum L. Theor Appl Genet 100:528–534

    Google Scholar 

  • Peña-Iglesias A, Ayuso P (1982) Characterization of Spanish garlic viruses and their elimination by in vitro shoot apex culture. Acta Hort 127:183–193

    Google Scholar 

  • Pooler MR, Simon PW (1993a) Characterization and classification of isozyme and morphological variation in a diverse collection of garlic clones. Euphytica 68:121–130

    Article  CAS  Google Scholar 

  • Pooler MR, Simon PW (1993b) Garlic flowering in response to clone, photoperiod, growth temperature and cold storage. HortScience 28:1085–1086

    Article  Google Scholar 

  • Porter DR, Jones HA (1932) Resistance of some of the cultivated species of Allium to pink root (Phoma terrestris). Phytopathology 23:290–298

    Google Scholar 

  • Rabinowitch HD, Zeltzer O (1984) Collection, preservation, characterization and evaluation of Allium species growing wild in Israel: Selected Examples. Eucarpia, 3rdAllium Symposium, Wageningen, The Netherlands. Sept 1984, pp 27–36

    Google Scholar 

  • Ramírez-Malagón R, Pérez-Moreno L, Borodanenko A, Salinas-González GJ, Ochoa-Alejo N (2006) Differential organ infection studies, potyvirus elimination, and field performance of virus-free garlic plants produced by tissue culture. Plant Cell Tiss Org Cult 86:103–110

    Article  Google Scholar 

  • Raza A, Razzaq A, Mehmood SS, Zou X, Zhang X, Lv Y, Xu J (2019) Impact of climate change on crops adaptation and strategies to tackle its outcome: a review. Plants 8(2):34

    Article  CAS  PubMed Central  Google Scholar 

  • Reddy KR, Hodges HF, Kimball BA (2000) Crop ecosystem responses to global climate change: cotton. In: Reddy KR, Hodges HF (eds) Climate change and global crop productivity. CAB International, Wallingford, UK, pp 162–187

    Chapter  Google Scholar 

  • Robert U, Zel J, Ravnikar M (1998) Thermotherapy in virus elimination from garlic: influences on shoot multiplication from meristems and bulb formation in vitro. Sci Hort. 73:193–202

    Article  Google Scholar 

  • Robinson RA (2007) Self-Organizing Agroecosystems. Sharebooks Publishing, ISBN 6980-9783634-1-3

    Google Scholar 

  • Robledo-Paz A, Cabrera Ponce JL, Villalobos Arámbula VM, Herrera Estrella L, Jofre Garfias AE (2004) Genetic transformation of garlic (Allium sativum L.) by particle bombardment. HortScience 39:1208–1211

    Article  CAS  Google Scholar 

  • Rout E, Nanda S, Nayak S, Joshi RK (2014) Molecular characterization of NBS encoding resistance genes and induction analysis of a putative candidate gene linked to Fusarium basal rot resistance in Allium sativum. Physiol Mol Plant Pathol 85:15–24

    Article  CAS  Google Scholar 

  • Rout E, Nanda S, Joshi RK (2016) Molecular characterization and heterologous expression of a pathogen induced PR5 gene from garlic (Allium sativum L.) conferring enhanced resistance to necrotrophic fungi. Eur J Plant Pathol 144(2):345–360

    Article  CAS  Google Scholar 

  • Roy SJ, Tucker EJ, Tester M (2011) Genetic analysis of abiotic stress tolerance in crops. Curr Opin Plant Biol 14:232–239

    Article  CAS  PubMed  Google Scholar 

  • Rubatzky VE, Yamaguchi M (1997) World vegetables: principles, production and nutritive values, 2nd edn. Chapman and Hall, New York

    Book  Google Scholar 

  • Sako I, Nakasome W, Okada K, Ohki S, Osaki T, Inouye T (1991) Yellow streak of rakkyo (Allium chinense G. Don). A newly recognized disease caused by garlic latent virus and onion yellow dwarf virus. Ann Phytopathol Soc Jpn 57:65–69

    Article  Google Scholar 

  • Sandhu SS, Brar PS, Dhall RK (2015) Variability of agronomic and quality characteristics of garlic (Allium sativum L.) ecotypes. SABRAO J Breed Genet 47(2):133–142

    Google Scholar 

  • Sawahel WA (2002) Stable genetic transformation of garlic plants using particle bombardment. Cell Mol Biol Lett 7:49–59

    CAS  PubMed  Google Scholar 

  • Schwartz H (2004) Botrytis, downy mildew and purple blotch of onion. Colorado State University Cooperative Extension No. 2.941

    Google Scholar 

  • Schwartz HF, Mohan SK (1995) Infectious biotic diseases. White Rot. In Mohan SK, Schwartz HF (eds) Compendium of onion and garlic diseases. American Phytopathological Society, pp 7–15

    Google Scholar 

  • Shaaf S, Sharma R, Kilian B, Walther A, Özkan H, Karami E, Mohammadi B (2014) Genetic structure and eco-geographical adaptation of garlic landraces (Allium sativum L.) in Iran. Genet Resour. Crop Evol. https://doi.org/10.1007/s10722-014-0131-4

    Article  Google Scholar 

  • Silenzi JC, Moreno AM, Lucero JC (1985) Effect of irrigation with saline water on sprouting of cloves of garlic cv. Colorado. IDIA No. 433–436, 17–21 (Horticultural Abstracts, 56, 4145)

    Google Scholar 

  • Son JH, Park KC, Lee S, Kim HH, Kim JH, Kim SH, Kim NS (2012) Isolation of cold-responsive genes from garlic, Allium sativum. Genes Genom 34:93–101. https://doi.org/10.1007/s13258-011-0187-x

    Article  CAS  Google Scholar 

  • Songstad DD, Somers DA, Griesbach RJ (1995) Advances in alternative DNA delivery techniques. Plant Cell Tiss Org. Cult 40:1–15

    Article  CAS  Google Scholar 

  • Stinchcombe JR, Hoekstra HE (2008) Combining population genomics and quantitative genetics: finding the genes underlying ecologically important traits. Heredity 100:158

    Article  CAS  PubMed  Google Scholar 

  • Sugimoto H, Tsuneyoshi T, Tsukamoto M, Uragami Y, Etoh T (1991) Embryo-cultured hybrids between garlic and leek. Allium Improv Newsl 1:67–68

    Google Scholar 

  • Sun X, Zhou S, Meng F, Liu S (2012) De novo assembly and characterization of the garlic (Allium sativum) bud transcriptome by Illumina sequencing. Plant Cell Rep 31:1823–1828

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Ma GQ, Cheng B, Li H, Liu SQ (2013) Identification of differentially expressed genes in shoot apex of garlic (Allium sativum L.) using Illumina sequencing. J Plant Stud 2:136

    Google Scholar 

  • Takagi H (1990) Garlic Allium sativum L. In: Brewster JL, Rabinowitch HD (eds) Onion and allied crops, vol III. Biochemistry, food science and minor crops. CRC Press, Boca Raton, FL, pp 109–146

    Google Scholar 

  • Thoen MP, Davila Olivas NH, Kloth KJ, Coolen S, Huang PP, Aarts MG, Bac-Molenaar JA, Bakker J, Bouwmeester HJ, Broekgaarden C (2017) Genetic architecture of plant stress resistance: multi-trait genome-wide association mapping. New Phytol 213:1346–1362

    Article  CAS  PubMed  Google Scholar 

  • Ucman R, Zel J, Ravnikar M (1998) Thermotherapy in virus elimination from garlic: influences on shoot multiplication from meristems and bulb formation in vitro. Sci Hort. 73(4):193–202

    Article  Google Scholar 

  • Valdez JG, Makuch MA, Ordovini AF, Masuelli RW, Overy DP, Piccolo RJ (2006) First report of Penicillium allii as a field pathogen of garlic (Allium sativum). Plant Pathol 55(4):583

    Article  Google Scholar 

  • Vidal DBC, Mello MLS, Liig D (1993) Chromosome number and DNA content in cells of a biotechnologically selected somaclone of garlic (Allium sativum L.). Rev Brasil Genet 16:347–356

    Google Scholar 

  • Vieira RL, da Silva AL, Zaffari GR, Steinmacher DA, de Freitas Fraga HP, Guerra MP (2015) Efficient elimination of virus complex from garlic (Allium sativum L.) by cryotherapy of shoot tips. Acta Physiol Plant 37:1733

    Google Scholar 

  • Volk GM, Henk AD, Richards CM (2004) Genetic diversity among U.S. garlic clones as detected using AFLP methods. J Amer Soc Hort Sci 129:559–569

    Article  CAS  Google Scholar 

  • Wang H, Li X, Liu X, Oiu Y, Song J, Zhang X (2016) Genetic diversity of garlic (Allium sativum L.) germplasm from China by fluorescent-based AFLP, SSR and InDel markers. Plant Breed. 135:743–750. https://doi.org/10.1111/pbr.12424

    Article  CAS  Google Scholar 

  • Wani SH, Choudhary M, Kumar P, Akram NA, Surekha C, Ahmad P, Gosal SS (2018) Marker-assisted breeding for abiotic stress tolerance in crop plants. In: Gosal SS, Wani SH (eds) Biotechnologies of crop improvement, vol 3. Springer. Berlin, Heidelberg, Germany, pp 1–23

    Google Scholar 

  • Wei NS, We YF (1992) Identification of virus diseases and virus free meristem culture of garlic. Acta Univ Agri Bor Occid 20(1):76–81

    Google Scholar 

  • Wu M, Jin F, Zhang J, Yang L, Jiang D, Li G (2012) Characterization of a novel bipartite double-stranded RNA mycovirus conferring hypovirulence in the pathogenic fungus Botrytis porri. J Virol 86:6605–6619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu C, Wang M, Dong Y, Cheng Z, Meng H (2015) Growth, bolting and yield of garlic (Allium sativum L.) in response to clove chilling treatment. Sci Hort 194:43–52

    Article  Google Scholar 

  • Wu C, Wang M, Cheng Z, Meng H (2016) Response of garlic (Allium sativum L.) bolting and bulbing to temperature and photoperiod treatments. Biol Open 5(4):507–18. https://doi.org/10.1242/bio.016444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue HM, Araki H, Shi L, Yakuwa T (1991) Somatic embryogenesis and plant regeneration in basal plate- and receptacle-derived callus cultures garlic (Allium sativum L.). J Jpn Soc Hort Sci 60:627–634

    Article  CAS  Google Scholar 

  • Yanagino T, Sugawara E, Watanabe M, Takahata Y (2003) Production and characterization of an interspecific hybrid between leek and garlic. Theor Appl Genet 107(1):1–5

    Article  CAS  PubMed  Google Scholar 

  • Zewde T, Fininsa C, Sakhuja PK, Ahmed S (2007) Association of white rot (Sclerotium cepivorum) of garlic with environmental factors and cultural practices in the North Shewa highlands of Ethiopia. Crop Protec 26: 1566e1573

    Article  Google Scholar 

  • Zewdie Y, Havey MJ, Prince JP, Jenderek MM (2005) The first genetic linkages among expressed regions of the garlic genome. J Amer Soc Hort Sci 130(4):569–574

    Article  CAS  Google Scholar 

  • Zhao WG, Chung JW, Lee GA, Ma KH, Kim HH, Kim KT, Chung IM, Lee JK, Kim NS, Kim SM, Park YJ (2011) Molecular genetic diversity and population structure of a selected core set in garlic and its relatives using novel SSR markers. Plant Breed 130:46–54

    Article  CAS  Google Scholar 

  • Zheng SJ, Henken B, Ahn YK, Krens FA, Kik C (2004) The development of a reproducible Agrobacterium tumefaciens transformation system for garlic (Allium sativum L.) and the production of transgenic garlic resistant to beet armyworm (Spodoptera exigua Hübner). Mol Breed 14:293–307

    Article  CAS  Google Scholar 

  • Zilberman D, Lipper L, McCarthy N, Gordon B (2018) Innovation in response to climate change. In: Lipper L, McCarthy N, Zilberman D, Asfaw S, Branca G (eds) Climate smart agriculture. Springer, Cham, Switzerland, pp 49–74

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Khar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khar, A., Hirata, S., Abdelrahman, M., Shigyo, M., Singh, H. (2020). Breeding and Genomic Approaches for Climate-Resilient Garlic. In: Kole, C. (eds) Genomic Designing of Climate-Smart Vegetable Crops. Springer, Cham. https://doi.org/10.1007/978-3-319-97415-6_8

Download citation

Publish with us

Policies and ethics