Skip to main content

A Bio-inspired Aggregation with Robot Swarm Using Real and Simulated Mobile Robots

  • Conference paper
  • First Online:
Towards Autonomous Robotic Systems (TAROS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10965))

Included in the following conference series:

Abstract

This paper presents an implementation of a bio-inspired aggregation scenario using swarm robots. The aggregation scenario took inspiration from honeybee’s thermotactic behaviour in finding an optimal zone in their comb. To realisation of the aggregation scenario, real and simulated robots with different population sizes were used. Mona, which is an open-source and open-hardware platform was deployed to play the honeybee’s role in this scenario. A model of Mona was also generated in Stage for simulation of aggregation scenario with large number of robots. The results of aggregation with real- and simulated-robots showed reliable aggregations and a population dependent swarm performance. Moreover, the results demonstrated a direct correlation between the results observed from the real robot and simulation experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hamann, H.: Swarm Robotics: A Formal Approach. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-74528-2

    Book  Google Scholar 

  2. Schmickl, T., Thenius, R., Moeslinger, C., et al.: Get in touch: cooperative decision making based on robot-to-robot collisions. Auton. Agents Multi-Agent Syst. 18(1), 133–155 (2009)

    Article  Google Scholar 

  3. Turgut, A.E., Çelikkanat, H., Gökçe, F., Şahin, E.: Self-organized flocking in mobile robot swarms. Swarm Intell. 2(2), 97–120 (2008)

    Article  Google Scholar 

  4. Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization. IEEE Comput. Intell. Mag. 1(4), 28–39 (2006)

    Article  Google Scholar 

  5. Şahin, E.: Swarm robotics: from sources of inspiration to domains of application. In: Şahin, E., Spears, W.M. (eds.) SR 2004. LNCS, vol. 3342, pp. 10–20. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30552-1_2

    Chapter  Google Scholar 

  6. Arvin, F., Espinosa, J., Bird, B., West, A., Watson, S., Lennox, B.: Mona: an affordable open-source mobile robot for education and research. J. Intell. Robot. Syst. (2018). https://doi.org/10.1007/s10846-018-0866-9

  7. Hu, C., Arvin, F., Xiong, C., Yue, S.: Bio-inspired embedded vision system for autonomous micro-robots: the LGMD case. IEEE Trans. Cogn. Dev. Syst. 9(3), 241–254 (2017)

    Article  Google Scholar 

  8. Arvin, F., Krajník, T., Turgut, A.E., Yue, S.: COS\(\varPhi \): artificial pheromone system for robotic swarms research. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 407–412 (2015)

    Google Scholar 

  9. Arvin, F., Turgut, A.E., Krajnk, T., Yue, S.: Investigation of cue-based aggregation in static and dynamic environments with a mobile robot swarm. Adapt. Behav. 24(2), 102–118 (2016)

    Article  Google Scholar 

  10. Arvin, F., Watson, S., Turgut, A., Espinosa, J., Krajník, T., Lennox, B.: Perpetual robot swarm: long-term autonomy of mobile robots using on-the-fly inductive charging. J. Intell. Robot. Syst. 1–18 (2017)

    Google Scholar 

  11. Arvin, F., Bekravi, M.: Encoderless position estimation and error correction techniques for miniature mobile robots. Turk. J. Electr. Eng. Comput. Sci. 21(6), 1631–1645 (2013)

    Article  Google Scholar 

  12. Arvin, F., Samsudin, K., Ramli, A.: Development of IR-based short-range communication techniques for swarm robot applications. Adv. Electr. Comput. Eng. 10(4), 61–68 (2010)

    Article  Google Scholar 

  13. Arvin, F., Samsudin, K., Ramli, A.R., Bekravi, M.: Imitation of honeybee aggregation with collective behavior of swarm robots. Int. J. Comput. Intell. Syst. 4(4), 739–748 (2011)

    Google Scholar 

  14. Arvin, F., Turgut, A.E., Bazyari, F., Arikan, K.B., Bellotto, N., Yue, S.: Cue-based aggregation with a mobile robot swarm: a novel fuzzy-based method. Adapt. Behav. 22(3), 189–206 (2014)

    Article  Google Scholar 

  15. Arvin, F., Turgut, A.E., Bellotto, N., Yue, S.: Comparison of different cue-based swarm aggregation strategies. In: Tan, Y., Shi, Y., Coello, C.A.C. (eds.) ICSI 2014. LNCS, vol. 8794, pp. 1–8. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11857-4_1

    Chapter  Google Scholar 

  16. Arvin, F., Murray, J., Zhang, C., Yue, S.: Colias: an autonomous micro robot for swarm robotic applications. Int. J. Adv. Rob. Syst. 11(7), 113 (2014)

    Article  Google Scholar 

  17. Ivaldi, S., Padois, V., Nori, F.: Tools for dynamics simulation of robots: a survey based on user feedback. arXiv:1402.7050 (2014)

  18. Tan, Y., Zheng, Z.Y.: Research advance in swarm robotics. Def. Technol. 9(1), 18–39 (2013)

    Article  Google Scholar 

  19. Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source multi-robot simulator. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol. 3, pp. 2149–2154 (2004)

    Google Scholar 

  20. Pinciroli, C., et al.: ARGoS: a modular, parallel, multi-engine simulator for multi-robot systems. Swarm Intell. 6, 271–295 (2012)

    Article  Google Scholar 

  21. Dorigo, M., et al.: Swarmanoid: a novel concept for the study of heterogeneous robotic swarms. IEEE Robot. Autom. Mag. 20(4), 60–71 (2013)

    Article  MathSciNet  Google Scholar 

  22. Montes de Oca, M.A., et al.: Majority-rule opinion dynamics with differential latency: a mechanism for self-organized collective decision-making. Swarm Intell. 5(3), 305–327 (2011)

    Article  Google Scholar 

  23. Ducatelle, F., Di Caro, G.A., Pinciroli, C., Gambardella, L.M.: Self-organized cooperation between robotic swarms. Swarm Intell. 5(2), 73 (2011)

    Article  Google Scholar 

  24. Michel, O.: Cyberbotics Ltd. webots: professional mobile robot simulation. Int. J. Adv. Rob. Syst. 1(1), 5 (2004)

    Article  Google Scholar 

  25. Vaughan, R.: Massively multiple robot simulations in stage. Swarm Intell. 2(1), 189–208 (2008)

    Article  Google Scholar 

  26. Hereford, J.: Analysis of BEECLUST swarm algorithm. In: IEEE Symposium on Swarm Intelligence, pp. 1–7 (2011)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the EPSRC (Project No. EP/P01366X/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farshad Arvin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ramroop, S., Arvin, F., Watson, S., Carrasco-Gomez, J., Lennox, B. (2018). A Bio-inspired Aggregation with Robot Swarm Using Real and Simulated Mobile Robots. In: Giuliani, M., Assaf, T., Giannaccini, M. (eds) Towards Autonomous Robotic Systems. TAROS 2018. Lecture Notes in Computer Science(), vol 10965. Springer, Cham. https://doi.org/10.1007/978-3-319-96728-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96728-8_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96727-1

  • Online ISBN: 978-3-319-96728-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics