Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 372 Accesses

Abstract

In this chapter we present a selection of physical problems where the method in this thesis with its real time treatment of the electron–phonon dynamics can offer significant insights. The problems put this work in a physical frame and, above all, provide a motivation for its findings. First, we cover the general problem of radiation damage, picking results in the damage to biological systems and metals. Second, we explore the ultrashort heating of metals with a laser and the subsequent warm dense matter dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    One could wonder if it is appropriate to take special relativity into account at this scale of energies. The rest energy for an iron atom is \(\approx \)50 GeV, several orders of magnitude above the energies considered in the collisions, so special relativity can be safely ignored in this case. By contrast, for cosmic-ray cascades, relativity plays a crucial role since the projectiles are usually light and extremely fast.

  2. 2.

    It is intuitive that the higher the initial energy of the PKA, the larger the number of sub-cascades expected. A recent article [8] studies high energy iron cascades (up to 0.5 MeV). Contrary to intuition and common belief, the authors reported a reduced cascade branching compared to lower energy cascades and a rather continuous distribution of damage.

References

  1. Zarkadoula, E., R. Devanathan, W.J. Weber, M.A. Seaton, I.T. Todorov, K. Nordlund, M.T. Dove, and K. Trachenko. 2014. High-energy radiation damage in zirconia: Modeling results. Journal of Applied Physics 115 (8): 083507. https://doi.org/10.1063/1.4866989.

    Article  ADS  Google Scholar 

  2. Mansur, L. 1994. Theory and experimental background on dimensional changes in irradiated alloys. Journal of Nuclear Materials 216: 97–123. https://doi.org/10.1016/0022-3115(94)90009-4.

    Article  ADS  Google Scholar 

  3. Race, C.P., D.R. Mason, M.W. Finnis, W.M.C. Foulkes, A.P. Horsfield, and A.P. Sutton. 2010. The treatment of electronic excitations in atomistic models of radiation damage in metals. Reports on Progress in Physics 73 (11): 116501. https://doi.org/10.1088/0034-4885/73/11/116501.

    Article  ADS  Google Scholar 

  4. Boudaïffa, B., P. Cloutier, D. Hunting, M. Huels, and L. Sanche. 2000. Resonant formation of DNA strand breaks by low-energy (3–20 eV) electrons. Science 287 (5458): 1658–1660. https://doi.org/10.1126/science.287.5458.1658.

    Article  ADS  Google Scholar 

  5. Smyth, M., and J. Kohanoff. 2011. Excess electron localization in solvated DNA bases. Physical Review Letters 106 (23): 238108. https://doi.org/10.1103/PhysRevLett.106.238108.

    Article  ADS  Google Scholar 

  6. Baccarelli, I., I. Bald, F.A. Gianturco, E. Illenberger, and J. Kopyra. 2011. Electron-induced damage of DNA and its components: Experiments and theoretical models. Physics Reports 508 (1–2): 1–44. https://doi.org/10.1016/j.physrep.2011.06.004.

    Article  ADS  Google Scholar 

  7. Race, C. 2011. A radiation damage cascade. In The modelling of radiation damage in metals using ehrenfest dynamics. Springer Theses, Springer. https://doi.org/10.1007/978-3-642-15439-3_2.

  8. Zarkadoula, E., S.L. Daraszewicz, D.M. Duffy, M.A. Seaton, I.T. Todorov, K. Nordlund, M.T. Dove, and K. Trachenko. 2013. The nature of high-energy radiation damage in iron. Journal of Physics. Condensed Matter: An Institute of Physics Journal 25(12): 125402. https://doi.org/10.1088/0953-8984/25/12/125402.

  9. Correa, A.A., J. Kohanoff, E. Artacho, D. Sánchez-Portal, and A. Caro. 2012. Nonadiabatic forces in ion-solid interactions: The initial stages of radiation damage. Physical Review Letters 108 (21): 213201. https://doi.org/10.1103/PhysRevLett.108.213201.

    Article  ADS  Google Scholar 

  10. Mason, D.R., J. le Page, C.P. Race, W.M.C. Foulkes, M.W. Finnis, and A.P. Sutton. 2007. Electronic damping of atomic dynamics in irradiation damage of metals. Journal of Physics: Condensed Matter 19 (43): 436209. https://doi.org/10.1088/0953-8984/19/43/436209.

    Article  ADS  Google Scholar 

  11. Zeb, M.A., J. Kohanoff, D. Sánchez-Portal, A. Arnau, J.I. Juaristi, and E. Artacho. 2012. Electronic stopping power in gold: The role of d electrons and the H/He anomaly. Physical Review Letters 108 (22): 225504. https://doi.org/10.1103/PhysRevLett.108.225504.

    Article  ADS  Google Scholar 

  12. Sanche, L. 2009. Biological chemistry: Beyond radical thinking. Nature 461 (7262): 358–359. https://doi.org/10.1038/461358a.

    Article  ADS  Google Scholar 

  13. Alizadeh, E., T.M. Orlando, and L. Sanche. 2015. Biomolecular damage induced by ionizing radiation: The direct and indirect effects of low-energy electrons on DNA. Annual Review of Physical Chemistry 66: 379–98. https://doi.org/10.1146/annurev-physchem-040513-103605.

    Article  ADS  Google Scholar 

  14. Pimblott, S.M., and J.A. LaVerne. 2007. Production of low-energy electrons by ionizing radiation. Radiation Physics and Chemistry 76 (8–9): 1244–1247. https://doi.org/10.1016/j.radphyschem.2007.02.012.

    Article  ADS  Google Scholar 

  15. Michael, B.D. 2000. A sting in the tail of electron tracks. Science 287 (5458): 1603–1604. https://doi.org/10.1126/science.287.5458.1603.

    Article  Google Scholar 

  16. Jeggo, P.A., and M. Löbrich. 2007. DNA double-strand breaks: Their cellular and clinical impact? Oncogene 26 (56): 7717–9. https://doi.org/10.1038/sj.onc.1210868.

    Article  Google Scholar 

  17. Martin, F., P. Burrow, Z. Cai, P. Cloutier, D. Hunting, and L. Sanche. 2004. DNA strand breaks induced by 04 eV electrons: The role of shape resonances. Physical Review Letters 93 (6): 068101. https://doi.org/10.1103/PhysRevLett.93.068101.

    Article  ADS  Google Scholar 

  18. Cho, W., M. Michaud, and L. Sanche. 2004. Vibrational and electronic excitations of \({\rm H}_2\)O on thymine films induced by low-energy electrons. The Journal of Chemical Physics 121 (22): 11289. https://doi.org/10.1063/1.1814057.

    Article  ADS  Google Scholar 

  19. Simons, J. 2006. How do low-energy (0.1–2 eV) electrons cause DNA strand breaks? Accounts of Chemical Research 39 (10): 772–779. https://doi.org/10.1021/ar0680769.

    Article  Google Scholar 

  20. Alizadeh, E., and L. Sanche. 2013. Role of humidity and oxygen level on damage to DNA induced by soft X-rays and low-energy electrons. The Journal of Physical Chemistry C 117 (43): 22 445–22 453. https://doi.org/10.1021/jp403350j.

    Article  Google Scholar 

  21. Orlando, T.M., D. Oh, Y. Chen, and A.B. Aleksandrov. 2008. Low-energy electron diffraction and induced damage in hydrated DNA. The Journal of Chemical Physics 128 (19): 195102. https://doi.org/10.1063/1.2907722.

    Article  ADS  Google Scholar 

  22. Smyth, M., and J. Kohanoff. 2012. Excess electron interactions with solvated DNA nucleotides: Strand breaks possible at room temperature. Journal of the American Chemical Society 134 (22): 9122–9125. https://doi.org/10.1021/ja303776r.

    Article  Google Scholar 

  23. McAllister, M., M. Smyth, B. Gu, G.A. Tribello, and J. Kohanoff. 2015. Understanding the interaction between low-energy electrons and DNA nucleotides in aqueous solution. The Journal of Physical Chemistry Letters 6 (15): 3091–3097. https://doi.org/10.1021/acs.jpclett.5b01011.

    Article  Google Scholar 

  24. Haxton, D.J., Z. Zhang, H.-D. Meyer, T.N. Rescigno, and C.W. McCurdy. 2004. Dynamics of dissociative attachment of electrons to water through the 2B1 metastable state of the anion. Physical Review A 69 (6): 062714. https://doi.org/10.1103/PhysRevA.69.062714.

    Article  ADS  Google Scholar 

  25. Smyth, M., J. Kohanoff, and I.I. Fabrikant. 2014. Electron-induced hydrogen loss in uracil in a water cluster environment. The Journal of Chemical Physics 140 (18): 184313. https://doi.org/10.1063/1.4874841.

    Article  ADS  Google Scholar 

  26. Gu, B., M. Smyth, and J. Kohanoff. 2014. Protection of DNA against low-energy electrons by amino acids: A first-principles molecular dynamics study. Physical Chemistry Chemical Physics 16 (44): 24 350–24 358. https://doi.org/10.1039/C4CP03906H.

    Article  Google Scholar 

  27. Bovensiepen, U. 2007. Coherent and incoherent excitations of the Gd(0001) surface on ultrafast timescales. Journal of Physics: Condensed Matter 19 (8): 083201. https://doi.org/10.1088/0953-8984/19/8/083201.

    Article  ADS  Google Scholar 

  28. Fann, W.S., R. Storz, H.W.K. Tom, and J. Bokor. 1992. Direct measurement of nonequilibrium electron-energy distributions in subpicosecond laser-heated gold films. Physical Review Letters 68 (18): 2834–2837. https://doi.org/10.1103/PhysRevLett.68.2834.

    Article  ADS  Google Scholar 

  29. Del Fatti, N., C. Voisin, M. Achermann, S. Tzortzakis, D. Christofilos, and F. Vallée. 2000. Nonequilibrium electron dynamics in noble metals. Physical Review B 61 (24): 16 956–16 966. https://doi.org/10.1103/PhysRevB.61.16956.

    Article  Google Scholar 

  30. Ziman, J. M. 1972. Transport properties. In Principles of the theory of solids, 211–254. Cambridge: Cambridge University Press.

    Google Scholar 

  31. Anisimov, S.I., B.L. Kapeliovich, and T.L. Perel’man. 1975. Electron emission from metal surfaces exposed to ultrashort laser pulses. Journal of Experimental and Theoretical Physics 39: 375–377.

    ADS  Google Scholar 

  32. Kaganov, M.I., I.M. Lifshitz, and L.V. Tanatarov. 1957. Relaxation between electrons and the Crystalline Lattice. Soviet Physics JETP 4: 173–178.

    MATH  Google Scholar 

  33. Tzou, D. 2014. Ultrafast pulse-laser heating on metal films. In Macro- to microscale heat transfer, 193–229. Chichester, UK: Wiley. https://doi.org/10.1002/9781118818275.ch5.

  34. Mueller, B.Y., and B. Rethfeld. 2013. Relaxation dynamics in laser-excited metals under nonequilibrium conditions. Physical Review B 87 (3): 035139. https://doi.org/10.1103/PhysRevB.87.035139.

    Article  ADS  Google Scholar 

  35. Fann, W.S., R. Storz, H.W.K. Tom, and J. Bokor. 1992. Electron thermalization in gold. Physical Review B 46 (20): 13 592–13 595. https://doi.org/10.1103/PhysRevB.46.13592.

    Article  Google Scholar 

  36. Lisowski, M., P. Loukakos, U. Bovensiepen, J. Stähler, C. Gahl, and M. Wolf. 2004. Ultra-fast dynamics of electron thermalization, cooling and transport effects in Ru(001). Applied Physics A: Materials Science & Processing 78 (2): 165–176. https://doi.org/10.1007/s00339-003-2301-7.

    Article  ADS  Google Scholar 

  37. Bovensiepen, U., and P. Kirchmann. 2012. Elementary relaxation processes investigated by femtosecond photoelectron spectroscopy of two-dimensional materials. Laser & Photonics Reviews 6 (5): 589–606. https://doi.org/10.1002/lpor.201000035.

    Article  ADS  Google Scholar 

  38. Yang, S.-L., J. Sobota, D. Leuenberger, Y. He, M. Hashimoto, D. Lu, H. Eisaki, P. Kirchmann, and Z.-X. Shen. 2015. Inequivalence of single-particle and population lifetimes in a cuprate superconductor. Physical Review Letters 114 (24): 247001. https://doi.org/10.1103/PhysRevLett.114.247001.

    Article  ADS  Google Scholar 

  39. Cho, B.I., K. Engelhorn, A.A. Correa, T. Ogitsu, C.P. Weber, H.J. Lee, J. Feng, P.A. Ni, Y. Ping, A.J. Nelson, D. Prendergast, R.W. Lee, R.W. Falcone, and P.A. Heimann. 2011. Electronic structure of warm dense copper studied by ultrafast X-ray absorption spectroscopy. Physical Review Letters 106 (16): 167601. https://doi.org/10.1103/PhysRevLett.106.167601.

    Article  ADS  Google Scholar 

  40. Ogitsu, T., Y. Ping, A. Correa, B.I. Cho, P. Heimann, E. Schwegler, J. Cao, and G.W. Collins. 2012. Ballistic electron transport in non-equilibrium warm dense gold. High Energy Density Physics 8 (3): 303–306. https://doi.org/10.1016/j.hedp.2012.01.002.

    Article  ADS  Google Scholar 

  41. Perfetti, L., P.A. Loukakos, M. Lisowski, U. Bovensiepen, H. Eisaki, and M. Wolf. 2007. Ultrafast electron relaxation in superconducting Bi(2)Sr(2)CaCu(2)O(8+delta) by time-resolved photoelectron spectroscopy. Physical Review Letters 99 (19): 197001. https://doi.org/10.1103/PhysRevLett.99.197001.

    Article  ADS  Google Scholar 

  42. Avigo, I., R. Cortés, L. Rettig, S. Thirupathaiah, H.S. Jeevan, P. Gegenwart, T. Wolf, M. Ligges, M. Wolf, J. Fink, and U. Bovensiepen. 2013. Coherent excitations and electron–phonon coupling in Ba/EuFe2As2 compounds investigated by femtosecond time- and angle-resolved photoemission spectroscopy. Journal of Physics: Condensed Matter 25 (9): 094003. https://doi.org/10.1088/0953-8984/25/9/094003.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerio Rizzi .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rizzi, V. (2018). Physical Motivation. In: Real-Time Quantum Dynamics of Electron–Phonon Systems. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-96280-1_2

Download citation

Publish with us

Policies and ethics