Skip to main content

Selenium and Diabetes

  • Chapter
  • First Online:
Selenium

Part of the book series: Molecular and Integrative Toxicology ((MOLECUL))

Abstract

The relationship between selenium (Se) and diabetes remains an evolving field. Early studies were focused on antioxidant benefits of Se in diabetic animals and patients. However, the discovery of type 2 diabetes-like phenotype in the glutathione peroxidase (GPX) 1 overexpression mice and the pro-diabetic potential of Se supplementation in cancer subjects have provoked both research and public interests on its role in diabetes. Limited human data indicate a Se baseline-dependent risk for diabetes associated with Se supplementations: potentiating the risk for diabetes only in subjects with high-Se status. Among the 25 selenoproteins, GPX1 exhibits dual roles in insulin synthesis, secretion, and signaling via regulation of redox homeostasis, and selenoprotein P has the counteraction effect on insulin signaling. Both GPX3 and selenoprotein S may play roles in diabetic etiology via mediating inflammation. Dysregulations of the two endoplasmic reticulum (ER)-resident selenoproteins, selenoproteins M and T, may disturb the redox homeostasis in ER, causing ER stress and increasing the diabetes risk. Iodothyronine deiodinases catalyze the metabolism of thyroid hormones and thus may affect the metabolism of glucose, lipids, and protein in the diabetic status. Polymorphism of selenoprotein genes in humans offers clues to the association of Se/selenoproteins and diabetes risk. In conclusion, effects of Se intake on the risk of diabetes are dose and baseline dependent. While underlying mechanisms for this paradox are partly understood through animal studies on the functions of several selenoproteins, appropriate Se intakes for the general public to prevent or treat diabetes warrant future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AKT:

Protein kinase B

AMPK:

Adenosine monophosphate-activated protein kinase

BMI:

Body mass index

BW:

Body weight

CAT:

Catalase

CI:

Confidence interval

Cys:

Cysteine

DIO:

Iodothyronine deiodinase

DM:

Diabetes mellitus

ER:

Endoplasmic reticulum

FOXA2:

Forkhead box A2

FOXO1a:

Forkhead box O1a

FPG:

Fasting plasma glucose

FPI:

Fasting plasma insulin

G6P:

Glucose-6-phosphatase

GDM:

Gestational diabetes mellitus

GPX:

Glutathione peroxidase

GSIS:

Glucose-stimulated insulin secretion

HOMA-IR:

Homeostasis model assessment of insulin resistance

INSR:

Insulin receptor

IRS:

Insulin receptor substrate

MS:

Metabolic syndrome

MSRB1:

Methionine-R-sulfoxide reductase B1

NCD:

Noncommunicable disease

NF-κB (NFKB1 in GenBank):

Nuclear factor kappa B subunit 1

OR:

Odds ratio

PACAP:

Pituitary adenylate cyclase-activating polypeptide

PDX1:

Pancreatic duodenal homeobox 1

PEPCK/PCK:

Phosphoenolpyruvate carboxykinase

PGC1α (PPARGC1A in GenBank):

Peroxisome proliferator-activated receptor gamma coactivator 1 alpha

PI3K:

Phosphatidylinositol 3-kinase

PPARγ (PPARG in GenBank):

Peroxisome proliferator-activated receptor gamma

PTP1B (PTPN1 in GenBank):

Protein-tyrosine phosphatase 1B (non-receptor type 1)

RCT:

Randomized controlled trial

ROS:

Reactive oxygen species

SAA:

Serum amyloid A

Scly:

Selenocysteine lyase

Se:

Selenium

Sec:

Selenocysteine

SELENOM:

Selenoprotein M

SELENOP:

Selenoprotein P

SELENOS:

Selenoprotein S

SELENOT:

Selenoprotein T

SeMet:

Selenomethionine

SNP:

Single-nucleotide polymorphism

SOD:

Superoxide dismutase

T1D:

Type 1 diabetes

T2D:

Type 2 diabetes

T3:

3,5,3′-Triiodothyronine

T4:

3,5,3′,5′-Tetraiodothyronine

UCP:

Uncoupling protein

UTR:

Untranslated region

References

  • Agbor GA, et al. Effect of selenium- and glutathione-enriched yeast supplementation on a combined atherosclerosis and diabetes hamster model. J Agric Food Chem. 2007;55(21):8731–6.

    Article  CAS  PubMed  Google Scholar 

  • Akbaraly TN, et al. Plasma selenium and risk of dysglycemia in an elderly French population: results from the prospective Epidemiology of Vascular Ageing Study. Nutr Metab (Lond). 2010;7:21.

    Article  CAS  Google Scholar 

  • Alehagen U, et al. Relatively high mortality risk in elderly Swedish subjects with low selenium status. Eur J Clin Nutr. 2016;70(1):91–6.

    Article  CAS  PubMed  Google Scholar 

  • Algotar AM, et al. No effect of selenium supplementation on serum glucose levels in men with prostate cancer. Am J Med. 2010;123(8):765–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Algotar AM, et al. Selenium supplementation has no effect on serum glucose levels in men at high risk of prostate cancer. J Diabetes. 2013;5(4):465–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altinova AE, et al. Selenoprotein P is not elevated in gestational diabetes mellitus. Gynecol Endocrinol. 2015;31(11):874–6.

    Article  CAS  PubMed  Google Scholar 

  • Ariyasu D, Yoshida H, Hasegawa Y. Endoplasmic reticulum (ER) stress and endocrine disorders. Int J Mol Sci. 2017;18(2):E382.

    Article  PubMed  CAS  Google Scholar 

  • Arrojo EDR, Bianco AC. Type 2 deiodinase at the crossroads of thyroid hormone action. Int J Biochem Cell Biol. 2011;43(10):1432–41.

    Article  CAS  Google Scholar 

  • Arsenijevic D, et al. Disruption of the uncoupling protein-2 gene in mice reveals a role in immunity and reactive oxygen species production. Nat Genet. 2000;26(4):435–9.

    Article  CAS  PubMed  Google Scholar 

  • Arthur JR. The glutathione peroxidases. Cell Mol Life Sci. 2000;57(13–14):1825–35.

    CAS  PubMed  Google Scholar 

  • Asayama K, Kooy NW, Burr IM. Effect of vitamin E deficiency and selenium deficiency on insulin secretory reserve and free radical scavenging systems in islets: decrease of islet manganosuperoxide dismutase. J Lab Clin Med. 1986;107(5):459–64.

    CAS  PubMed  Google Scholar 

  • Avissar N, et al. Human kidney proximal tubules are the main source of plasma glutathione peroxidase. Am J Phys. 1994;266(2 Pt 1):C367–75.

    Article  CAS  Google Scholar 

  • Ayaz M, et al. Protective effect of selenium treatment on diabetes-induced myocardial structural alterations. Biol Trace Elem Res. 2002;89(3):215–26.

    Article  CAS  PubMed  Google Scholar 

  • Aydemir-Koksoy A, Turan B. Selenium inhibits proliferation signaling and restores sodium/potassium pump function of diabetic rat aorta. Biol Trace Elem Res. 2008;126(1–3):237–45.

    Article  CAS  PubMed  Google Scholar 

  • Battell ML, Delgatty HL, McNeill JH. Sodium selenate corrects glucose tolerance and heart function in STZ diabetic rats. Mol Cell Biochem. 1998;179(1–2):27–34.

    Article  CAS  PubMed  Google Scholar 

  • Becker DJ, et al. Oral selenate improves glucose homeostasis and partly reverses abnormal expression of liver glycolytic and gluconeogenic enzymes in diabetic rats. Diabetologia. 1996;39(1):3–11.

    Article  CAS  PubMed  Google Scholar 

  • Berg EA, et al. Insulin-like effects of vanadate and selenate on the expression of glucose-6-phosphate dehydrogenase and fatty acid synthase in diabetic rats. Biochimie. 1995;77(12):919–24.

    Article  CAS  PubMed  Google Scholar 

  • Bleys J, Navas-Acien A, Guallar E. Serum selenium and diabetes in U.S. adults. Diabetes Care. 2007;30(4):829–34.

    Article  CAS  PubMed  Google Scholar 

  • Bos MM, et al. Thyroid Signaling, Insulin Resistance, and 2 Diabetes Mellitus: A Mendelian Randomization Study. J Clin Endocrinol Metab. 2017;102(6):1960–70.

    Article  PubMed  Google Scholar 

  • Boukhzar L, et al. Selenoprotein T exerts an essential oxidoreductase activity that protects dopaminergic neurons in mouse models of parkinson’s disease. Antioxid Redox Signal. 2016;24(11):557–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brigelius-Flohe R, Flohe L. Selenium and redox signaling. Arch Biochem Biophys. 2017;617:48–59.

    Article  CAS  PubMed  Google Scholar 

  • Brownlee M, Cerami A, Vlassara H. Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications. N Engl J Med. 1988;318(20):1315–21.

    Article  CAS  PubMed  Google Scholar 

  • Bunk MJ, Combs GF Jr. Relationship of selenium-dependent glutathione peroxidase activity and nutritional pancreatic atrophy in selenium-deficient chicks. J Nutr. 1981;111(9):1611–20.

    Article  CAS  PubMed  Google Scholar 

  • Burk RF, Hill KE. Selenoprotein P. A selenium-rich extracellular glycoprotein. J Nutr. 1994;124(10):1891–7.

    Article  CAS  PubMed  Google Scholar 

  • Burk RF, Hill KE. Selenoprotein P-expression, functions, and roles in mammals. Biochim Biophys Acta. 2009;1790(11):1441–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burk RF, et al. Deletion of apolipoprotein E receptor-2 in mice lowers brain selenium and causes severe neurological dysfunction and death when a low-selenium diet is fed. J Neurosci. 2007;27(23):6207–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell SC, et al. Selenium stimulates pancreatic beta-cell gene expression and enhances islet function. FEBS Lett. 2008;582(15):2333–7.

    Article  CAS  PubMed  Google Scholar 

  • Can B, et al. Selenium treatment protects diabetes-induced biochemical andultrastructural alterations in liver tissue. Biol Trace Elem Res. 2005;105(1–3):135–50.

    Article  CAS  PubMed  Google Scholar 

  • Canani LH, et al. The type 2 deiodinase A/G (Thr92Ala) polymorphism is associated with decreased enzyme velocity and increased insulin resistance in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab. 2005;90(6):3472–8.

    Article  CAS  PubMed  Google Scholar 

  • Cancarini A, et al. Trace elements and diabetes: assessment of levels in tears and serum. Exp Eye Res. 2017;154:47–52.

    Article  CAS  PubMed  Google Scholar 

  • Castillo M, et al. Disruption of thyroid hormone activation in type 2 deiodinase knockout mice causes obesity with glucose intolerance and liver steatosis only at thermoneutrality. Diabetes. 2011;60(4):1082–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, et al. Polymorphic variations in manganese superoxide dismutase (MnSOD), glutathione peroxidase-1 (GPX1), and catalase (CAT) contribute to elevated plasma triglyceride levels in Chinese patients with type 2 diabetes or diabetic cardiovascular disease. Mol Cell Biochem. 2012;363(1–2):85–91.

    Article  CAS  PubMed  Google Scholar 

  • Chen M, et al. Selenoprotein P is elevated in individuals with obesity, but is not independently associated with insulin resistance. Obes Res Clin Pract. 2017;11(2):227–32.

    Article  PubMed  Google Scholar 

  • Cheng Z, White MF. The AKTion in non-canonical insulin signaling. Nat Med. 2012;18(3):351–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi HY, et al. Increased selenoprotein p levels in subjects with visceral obesity and nonalcoholic Fatty liver disease. Diabetes Metab J. 2013;37(1):63–71.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chung SS, et al. Glutathione peroxidase 3 mediates the antioxidant effect of peroxisome proliferator-activated receptor gamma in human skeletal muscle cells. Mol Cell Biol. 2009;29(1):20–30.

    Article  CAS  PubMed  Google Scholar 

  • Cnop M, Foufelle F, Velloso LA. Endoplasmic reticulum stress, obesity and diabetes. Trends Mol Med. 2012;18(1):59–68.

    Article  CAS  PubMed  Google Scholar 

  • Coudray C, et al. Lipid peroxidation level and antioxidant micronutrient status in a pre-aging population; correlation with chronic disease prevalence in a French epidemiological study (Nantes, France). J Am Coll Nutr. 1997;16(6):584–91.

    CAS  PubMed  Google Scholar 

  • Curran JE, et al. Genetic variation in selenoprotein S influences inflammatory response. Nat Genet. 2005;37(11):1234–41.

    Article  CAS  PubMed  Google Scholar 

  • Czech MP, Lawrence JC Jr, Lynn WS. Evidence for electron transfer reactions involved in the Cu2+ −dependent thiol activation of fat cell glucose utilization. J Biol Chem. 1974;249(4):1001–6.

    CAS  PubMed  Google Scholar 

  • Czernichow S, et al. Antioxidant supplementation does not affect fasting plasma glucose in the Supplementation with Antioxidant Vitamins and Minerals (SU.VI.MAX) study in France: association with dietary intake and plasma concentrations. Am J Clin Nutr. 2006;84(2):395–9.

    Article  CAS  PubMed  Google Scholar 

  • Division for Nutrition, D.V.a.F.A. Safe upper intake levels for vitamins and minerals. 2006.

    Google Scholar 

  • Dora JM, et al. Association of the type 2 deiodinase Thr92Ala polymorphism with type 2 diabetes: case-control study and meta-analysis. Eur J Endocrinol. 2010;163(3):427–34.

    Article  CAS  PubMed  Google Scholar 

  • Douillet C, et al. Effect of selenium and vitamin E supplements on tissue lipids, peroxides, and fatty acid distribution in experimental diabetes. Lipids. 1998;33(4):393–9.

    Article  CAS  PubMed  Google Scholar 

  • Du JL, et al. Association of SelS mRNA expression in omental adipose tissue withHoma-IR and serum amyloid A in patients with type 2 diabetes mellitus. Chin Med J. 2008;121(13):1165–8.

    CAS  PubMed  Google Scholar 

  • Erbayraktar Z, et al. Effects of selenium supplementation on antioxidant defense and glucose homeostasis in experimental diabetes mellitus. Biol Trace Elem Res. 2007;118(3):217–26.

    Article  CAS  PubMed  Google Scholar 

  • Ezaki O. The insulin-like effects of selenate in rat adipocytes. J Biol Chem. 1990;265(2):1124–8.

    CAS  PubMed  Google Scholar 

  • Fairweather-Tait SJ, et al. Selenium in human health and disease. Antioxid Redox Signal. 2011;14(7):1337–83.

    Article  CAS  PubMed  Google Scholar 

  • Ferguson AD, et al. NMR structures of the selenoproteins Sep15 and SelM reveal redox activity of a new thioredoxin-like family. J Biol Chem. 2006;281(6):3536–43.

    Article  CAS  PubMed  Google Scholar 

  • Furnsinn C, et al. Insulin-like vs. non-insulin-like stimulation of glucose metabolism by vanadium, tungsten, and selenium compounds in rat muscle. Life Sci. 1996;59(23):1989–2000.

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, et al. Elevation in Tanis expression alters glucose metabolism and insulin sensitivity in H4IIE cells. Diabetes. 2003;52(4):929–34.

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, et al. Regulation of the selenoprotein SelS by glucose deprivation and endoplasmic reticulum stress - SelS is a novel glucose-regulated protein. FEBS Lett. 2004;563(1–3):185–90.

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, et al. Activation of the selenoprotein SEPS1 gene expression by pro-inflammatory cytokines in HepG2 cells. Cytokine. 2006;33(5):246–51.

    Article  CAS  PubMed  Google Scholar 

  • Gao S, et al. Selenium level and cognitive function in rural elderly Chinese. Am J Epidemiol. 2007;165(8):955–65.

    Article  PubMed  Google Scholar 

  • Gao H, et al. Serum selenium in relation to measures of glucose metabolism and incidence of Type 2 diabetes in an older Swedish population. Diabet Med. 2014;31(7):787–93.

    Article  CAS  PubMed  Google Scholar 

  • Gardner CD, et al. Hydrogen peroxide inhibits insulin signaling in vascular smooth muscle cells. Exp Biol Med (Maywood). 2003;228(7):836–42.

    Article  CAS  Google Scholar 

  • Gloire G, Legrand-Poels S, Piette J. NF-kappaB activation by reactive oxygen species: fifteen years later. Biochem Pharmacol. 2006;72(11):1493–505.

    Article  CAS  PubMed  Google Scholar 

  • Grankvist K, Marklund SL, Taljedal IB. CuZn-superoxide dismutase, Mn-superoxide dismutase, catalase and glutathione peroxidase in pancreatic islets and other tissues in the mouse. Biochem J. 1981;199(2):393–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grumolato L, et al. Selenoprotein T is a PACAP-regulated gene involved in intracellular Ca2+ mobilization and neuroendocrine secretion. FASEB J. 2008;22(6):1756–68.

    Article  CAS  PubMed  Google Scholar 

  • Hamieh A, et al. Selenoprotein T is a novel OST subunit that regulates UPR signalingand hormone secretion. EMBO Rep. 2017;18(11):1935–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen LL, et al. Insulin signaling is inhibited by micromolar concentrations of H(2)O(2). Evidence for a role of H(2)O(2) in tumor necrosis factor alpha-mediated insulin resistance. J Biol Chem. 1999;274(35):25078–84.

    Article  CAS  PubMed  Google Scholar 

  • Hao Y, et al. Pyocyanin-induced mucin production is associated with redox modification of FOXA2. Respir Res. 2013;14:82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hei YJ, et al. Stimulation of MAP kinase and S6 kinase by vanadium and selenium in rat adipocytes. Mol Cell Biochem. 1998;178(1–2):367–75.

    Article  CAS  PubMed  Google Scholar 

  • Hellwege JN, et al. Genetic variants in selenoprotein P plasma 1 gene (SEPP1) are associated with fasting insulin and first phase insulin response in Hispanics. Gene. 2014;534(1):33–9.

    Article  CAS  PubMed  Google Scholar 

  • Hill KE, et al. The selenium-rich C-terminal domain of mouse selenoprotein P is necessary for the supply of selenium to brain and testis but not for the maintenance of whole body selenium. J Biol Chem. 2007;282(15):10972–80.

    Article  CAS  PubMed  Google Scholar 

  • Hill KE, et al. Selenoprotein P is the major selenium transport protein in mouse milk. PLoS One. 2014;9(7):e103486.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Himeno S, Chittum HS, Burk RF. Isoforms of selenoprotein P in rat plasma. Evidence for a full-length form and another form that terminates at the second UGA in the open reading frame. J Biol Chem. 1996;271(26):15769–75.

    Article  CAS  PubMed  Google Scholar 

  • Howell JJ, Stoffel M. Nuclear export-independent inhibition of Foxa2 by insulin. J Biol Chem. 2009;284(37):24816–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang JQ, et al. The selenium deficiency disease exudative diathesis in chicks is associated with downregulation of seven common selenoprotein genes in liver and muscle. J Nutr. 2011;141(9):1605–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes K, et al. Central obesity, insulin resistance, syndrome X, lipoprotein(a), and cardiovascular risk in Indians, Malays, and Chinese in Singapore. J Epidemiol Community Health. 1997;51(4):394–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang D, et al. Selenium acts as an insulin-like molecule for the down-regulation of diabetic symptoms via endoplasmic reticulum stress and insulin signalling proteins in diabetes-induced non-obese diabetic mice. J Biosci. 2007;32(4):723–35.

    Article  CAS  PubMed  Google Scholar 

  • Jung TW, et al. Salsalate and adiponectin improve palmitate-induced insulin resistance via inhibition of selenoprotein P through the AMPK-FOXO1alpha pathway. PLoS One. 2013;8(6):e66529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juszczuk-Kubiak E, et al. Effect of inorganic dietary selenium supplementation on selenoprotein and lipid metabolism gene expression patterns in liver and loin muscle of growing lambs. Biol Trace Elem Res. 2016;172(2):336–45.

    Article  CAS  PubMed  Google Scholar 

  • Kanaki M, Kardassis D. Regulation of the human lipoprotein lipase gene by the forkhead box transcription factor FOXA2/HNF-3beta in hepatic cells. Biochim Biophys Acta. 2017;1860(3):327–36.

    Article  CAS  Google Scholar 

  • Karlsson HK, et al. Relationship between serum amyloid A level and Tanis/SelS mRNA expression in skeletal muscle and adipose tissue from healthy and type 2 diabetic subjects. Diabetes. 2004;53(6):1424–8.

    Article  CAS  PubMed  Google Scholar 

  • Klein EA, et al. Vitamin E and the risk of prostate cancer: the selenium and vitamin E cancer prevention trial (SELECT). JAMA. 2011;306(14):1549–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kljai K, Runje R. Selenium and glycogen levels in diabetic patients. Biol Trace Elem Res. 2001;83(3):223–9.

    Article  CAS  PubMed  Google Scholar 

  • Klotz LO, et al. Redox regulation of FoxO transcription factors. Redox Biol. 2015;6:51–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ko BJ, et al. Levels of circulating selenoprotein P, fibroblast growth factor (FGF) 21 and FGF23 in relation to the metabolic syndrome in young children. Int J Obes. 2014;38(12):1497–502.

    Article  CAS  Google Scholar 

  • Kryukov GV, et al. Characterization of mammalian selenoproteomes. Science. 2003;300(5624):1439–43.

    Article  CAS  PubMed  Google Scholar 

  • de la Monte SM, Wands JR. Alzheimer’s disease is type 3 diabetes-evidence reviewed. J Diabetes Sci Technol. 2008;2(6):1101–13.

    Article  PubMed  PubMed Central  Google Scholar 

  • Labunskyy VM, et al. Both maximal expression of selenoproteins and selenoprotein deficiency can promote development of type 2 diabetes-like phenotype in mice. Antioxid Redox Signal. 2011;14(12):2327–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laclaustra M, et al. Serum selenium concentrations and diabetes in U.S. adults: National Health and Nutrition Examination Survey (NHANES) 2003-2004. Environ Health Perspect. 2009;117(9):1409–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ladenstein R, et al. Structure analysis and molecular model of the selenoenzymeglutathione peroxidase at 2.8 A resolution. J Mol Biol. 1979;134(2):199–218.

    Article  CAS  PubMed  Google Scholar 

  • Lee YS, et al. Dysregulation of adipose glutathione peroxidase 3 in obesity contributes to local and systemic oxidative stress. Mol Endocrinol. 2008;22(9):2176–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lei XG, Vatamaniuk MZ. Two tales of antioxidant enzymes on beta cells and diabetes. Antioxid Redox Signal. 2011;14(3):489–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lei XG, Vatamaniuk M. Glutathione peroxidase 1: models for diabetes and obesity. In: Hatfield DL, et al., editors. Selenium: its molecular biology and role in human health. New York: Springer; 2016. p. 587–94.

    Chapter  Google Scholar 

  • Leloup C, et al. Mitochondrial reactive oxygen species are obligatory signals for glucose-induced insulin secretion. Diabetes. 2009;58(3):673–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, et al. Inhibition of islet amyloid polypeptide fibril formation by selenium-containing phycocyanin and prevention of beta cell apoptosis. Biomaterials. 2014;35(30):8596–604.

    Article  CAS  PubMed  Google Scholar 

  • Li XT, et al. Association between plasma metal levels and diabetes risk: a case-control study in China. Biomed Environ Sci. 2017;30(7):482–91.

    PubMed  Google Scholar 

  • Lilley BN, Ploegh HL. A membrane protein required for dislocation of misfolded proteins from the ER. Nature. 2004;429(6994):834–40.

    Article  CAS  PubMed  Google Scholar 

  • Lippman SM, et al. Effect of selenium and vitamin E on risk of prostate cancer and other cancers: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA. 2009;301(1):39–51.

    Article  CAS  PubMed  Google Scholar 

  • Liu J, et al. Upregulation of Tanis mRNA expression in the liver is associated with insulin resistance in rats. Tohoku J Exp Med. 2009;219(4):307–10.

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, et al. Prolonged dietary selenium deficiency or excess does not globally affect selenoprotein gene expression and/or protein production in various tissues of pigs. J Nutr. 2012;142(8):1410–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loh K, et al. Reactive oxygen species enhance insulin sensitivity. Cell Metab. 2009;10(4):260–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu CW, et al. High serum selenium levels are associated with increased risk for diabetes mellitus independent of central obesity and insulin resistance. BMJ Open Diabetes Res Care. 2016;4(1):e000253.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mahadev K, et al. Insulin-stimulated hydrogen peroxide reversibly inhibits protein-tyrosine phosphatase 1b in vivo and enhances the early insulin action cascade. J Biol Chem. 2001;276(24):21938–42.

    Article  CAS  PubMed  Google Scholar 

  • Mahadev K, et al. The NAD(P)H oxidase homolog Nox4 modulates insulin-stimulated generation of H2O2 and plays an integral role in insulin signal transduction. Mol Cell Biol. 2004;24(5):1844–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malinouski M, et al. High-resolution imaging of selenium in kidneys: a localizedselenium pool associated with glutathione peroxidase 3. Antioxid Redox Signal. 2012;16(3):185–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao J, Teng W. The relationship between selenoprotein P and glucosemetabolism in experimental studies. Nutrients. 2013;5(6):1937–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marsili A, et al. Mice with a targeted deletion of the type 2 deiodinase are insulin resistant and susceptible to diet induced obesity. PLoS One. 2011;6(6):e20832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez A, et al. Polymorphisms in the selenoprotein S gene: lack of association with autoimmune inflammatory diseases. BMC Genomics. 2008;9:329.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McClung JP, et al. Development of insulin resistance and obesity in mice overexpressing cellular glutathione peroxidase. Proc Natl Acad Sci U S A. 2004;101(24):8852–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McNeill JH, Delgatty HL, Battell ML. Insulinlike effects of sodium selenate in streptozocin-induced diabetic rats. Diabetes. 1991;40(12):1675–8.

    Article  CAS  PubMed  Google Scholar 

  • Medina MC, et al. The thyroid hormone-inactivating type III deiodinase is expressed in mouse and human beta-cells and its targeted inactivation impairs insulin secretion. Endocrinology. 2011;152(10):3717–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meex RCR, Watt MJ. Hepatokines: linking nonalcoholic fatty liver disease and insulin resistance. Nat Rev Endocrinol. 2017;13(9):509–20.

    Article  CAS  PubMed  Google Scholar 

  • Mentuccia D, et al. Association between a novel variant of the human type 2deiodinase gene Thr92Ala and insulin resistance: evidence of interaction with the Trp64Arg variant of the beta-3-adrenergic receptor. Diabetes. 2002;51(3):880–3.

    Article  CAS  PubMed  Google Scholar 

  • Misu H, et al. A liver-derived secretory protein, selenoprotein P, causes insulin resistance. Cell Metab. 2010;12(5):483–95.

    Article  CAS  PubMed  Google Scholar 

  • Misu H, et al. Inverse correlation between serum levels of selenoprotein P and adiponectin in patients with type 2 diabetes. PLoS One. 2012;7(4):e34952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Misu H, et al. Deficiency of the hepatokine selenoprotein P increases responsiveness to exercise in mice through upregulation of reactive oxygen species and AMP-activated protein kinase in muscle. Nat Med. 2017;23(4):508–16.

    Article  CAS  PubMed  Google Scholar 

  • Mohammedi K, et al. Glutathione peroxidase-1 gene (GPX1) variants, oxidative stress and risk of kidney complications in people with type 1 diabetes. Metabolism. 2016;65(2):12–9.

    Article  CAS  PubMed  Google Scholar 

  • Moura Neto A, et al. Relation of thyroid hormone abnormalities with subclinical inflammatory activity in patients with type 1 and type 2 diabetes mellitus. Endocrine. 2016;51(1):63–71.

    Article  CAS  PubMed  Google Scholar 

  • Mueller AS, Pallauf J. Compendium of the antidiabetic effects of supranutritional selenate doses. In vivo and in vitro investigations with type II diabetic db/db mice. J Nutr Biochem. 2006;17(8):548–60.

    Article  CAS  PubMed  Google Scholar 

  • Mueller AS, Pallauf J, Rafael J. The chemical form of selenium affects insulinomimetic properties of the trace element: investigations in type II diabetic dbdb mice. J Nutr Biochem. 2003;14(11):637–47.

    Article  CAS  PubMed  Google Scholar 

  • Mueller AS, et al. Redox regulation of protein tyrosine phosphatase 1B by manipulation of dietary selenium affects the triglyceride concentration in rat liver. J Nutr. 2008;138(12):2328–36.

    Article  CAS  PubMed  Google Scholar 

  • Mueller AS, et al. Selenium and diabetes: an enigma? Free Radic Res. 2009a;43(11):1029–59.

    Article  CAS  PubMed  Google Scholar 

  • Mueller AS, et al. Regulation of the insulin antagonistic protein tyrosine phosphatase 1B by dietary Se studied in growing rats. J Nutr Biochem. 2009b;20(4):235–47.

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee B, et al. Novel implications of the potential role of selenium on antioxidant status in streptozotocin-induced diabetic mice. Biomed Pharmacother. 1998;52(2):89–95.

    Article  CAS  PubMed  Google Scholar 

  • Navarro-Alarcon M, et al. Serum and urine selenium concentrations as indicators of body status in patients with diabetes mellitus. Sci Total Environ. 1999;228(1):79–85.

    Article  CAS  PubMed  Google Scholar 

  • NCD-RisC. Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet. 2016;387(10027):1513–30.

    Article  Google Scholar 

  • NRC. Nutrient requirements of laboratory animals. 4th ed. Washington, DC: National Academy Press; 1995.

    Google Scholar 

  • Obeid O, et al. Plasma copper, zinc, and selenium levels and correlates with metabolic syndrome components of lebanese adults. Biol Trace Elem Res. 2008;123(1–3):58–65.

    Article  CAS  PubMed  Google Scholar 

  • Offield MF, et al. PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development. 1996;122(3):983–95.

    CAS  PubMed  Google Scholar 

  • Ogawa-Wong AN, Berry MJ, Seale LA. Selenium and metabolic disorders: an emphasis on type 2 diabetes risk. Nutrients. 2016;8(2):80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Olson GE, et al. Apolipoprotein E receptor-2 (ApoER2) mediates selenium uptake from selenoprotein P by the mouse testis. J Biol Chem. 2007;282(16):12290–7.

    Article  CAS  PubMed  Google Scholar 

  • Olson GE, et al. Megalin mediates selenoprotein P uptake by kidney proximal tubule epithelial cells. J Biol Chem. 2008;283(11):6854–60.

    Article  CAS  PubMed  Google Scholar 

  • Olson GE, et al. Extracellular glutathione peroxidase (Gpx3) binds specifically to basement membranes of mouse renal cortex tubule cells. Am J Physiol Ren Physiol. 2010;298(5):F1244–53.

    Article  CAS  Google Scholar 

  • Olsson M, et al. Expression of the selenoprotein S (SELS) gene in subcutaneous adipose tissue and SELS genotype are associated with metabolic risk factors. Metabolism. 2011;60(1):114–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozcan L, et al. Endoplasmic reticulum stress plays a central role in development of leptin resistance. Cell Metab. 2009;9(1):35–51.

    Article  CAS  PubMed  Google Scholar 

  • Ozdemir S, et al. Effect of selenite treatment on ultrastructural changes in experimental diabetic rat bones. Biol Trace Elem Res. 2005;107(2):167–79.

    Article  CAS  PubMed  Google Scholar 

  • Papp LV, et al. From selenium to selenoproteins: synthesis, identity, and their role in human health. Antioxid Redox Signal. 2007;9(7):775–806.

    Article  CAS  PubMed  Google Scholar 

  • Park K, et al. Toenail selenium and incidence of type 2 diabetes in U.S. men and women. Diabetes Care. 2012;35(7):1544–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pepper MP, et al. Impacts of dietary selenium deficiency on metabolic phenotypes of diet-restricted GPX1-overexpressing mice. Antioxid Redox Signal. 2011;14(3):383–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pi J, et al. Reactive oxygen species as a signal in glucose-stimulated insulin secretion. Diabetes. 2007;56(7):1783–91.

    Article  CAS  PubMed  Google Scholar 

  • Pi J, et al. ROS signaling, oxidative stress and Nrf2 in pancreatic beta-cell function. Toxicol Appl Pharmacol. 2010;244(1):77–83.

    Article  CAS  PubMed  Google Scholar 

  • Pillay TS, Makgoba MW. Enhancement of epidermal growth factor (EGF) and insulin-stimulated tyrosine phosphorylation of endogenous substrates by sodium selenate. FEBS Lett. 1992;308(1):38–42.

    Article  CAS  PubMed  Google Scholar 

  • Pinto A, et al. Delaying of insulin signal transduction in skeletal muscle cells by selenium compounds. J Inorg Biochem. 2011;105(6):812–20.

    Article  CAS  PubMed  Google Scholar 

  • Pinto A, et al. Supranutritional selenium induces alterations in molecular targets related to energy metabolism in skeletal muscle and visceral adipose tissue of pigs. J Inorg Biochem. 2012;114:47–54.

    Article  CAS  PubMed  Google Scholar 

  • Pitts MW, et al. Deletion of selenoprotein M leads to obesity without cognitive deficits. J Biol Chem. 2013;288(36):26121–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ponugoti B, Dong G, Graves DT. Role of forkhead transcription factors in diabetes-induced oxidative stress. Exp Diabetes Res. 2012;2012:939751.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Prevost G, et al. The PACAP-regulated gene selenoprotein T is abundantly expressed in mouse and human beta-cells and its targeted inactivation impairs glucose tolerance. Endocrinology. 2013;154(10):3796–806.

    Article  CAS  PubMed  Google Scholar 

  • Rains JL, Jain SK. Oxidative stress, insulin signaling, and diabetes. Free Radic Biol Med. 2011;50(5):567–75.

    Article  CAS  PubMed  Google Scholar 

  • Rajpathak S, et al. Toenail selenium and cardiovascular disease in men withdiabetes. J Am Coll Nutr. 2005;24(4):250–6.

    Article  CAS  PubMed  Google Scholar 

  • Rasekh HR, et al. Effect of selenium on plasma glucose of rats: role of insulin and glucocorticoids. Toxicol Lett. 1991;58(2):199–207.

    Article  CAS  PubMed  Google Scholar 

  • Rayman MP. The importance of selenium to human health. Lancet. 2000;356(9225):233–41.

    Article  CAS  PubMed  Google Scholar 

  • Rayman MP. Selenium and human health. Lancet. 2012;379(9822):1256–68.

    Article  CAS  PubMed  Google Scholar 

  • Rayman MP, Stranges S. Epidemiology of selenium and type 2 diabetes: can we make sense of it? Free Radic Biol Med. 2013;65:1557–64.

    Article  CAS  PubMed  Google Scholar 

  • Rayman MP, Infante HG, Sargent M. Food-chain selenium and human health: spotlight on speciation. Br J Nutr. 2008;100(2):238–53.

    CAS  PubMed  Google Scholar 

  • Rayman MP, et al. A randomized trial of selenium supplementation and risk of type-2 diabetes, as assessed by plasma adiponectin. PLoS One. 2012;7(9):e45269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddi AS, Bollineni JS. Selenium-deficient diet induces renal oxidative stress and injury via TGF-beta1 in normal and diabetic rats. Kidney Int. 2001;59(4):1342–53.

    Article  CAS  PubMed  Google Scholar 

  • Reeves MA, Bellinger FP, Berry MJ. The neuroprotective functions of selenoprotein M and its role in cytosolic calcium regulation. Antioxid Redox Signal. 2010;12(7):809–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts CK, Sindhu KK. Oxidative stress and metabolic syndrome. Life Sci. 2009;84(21–22):705–12.

    Article  CAS  PubMed  Google Scholar 

  • Rochon C, et al. Response of glucose disposal to hyperinsulinaemia in human hypothyroidism and hyperthyroidism. Clin Sci (Lond). 2003;104(1):7–15.

    Article  CAS  Google Scholar 

  • Rock C, Moos PJ. Selenoprotein P regulation by the glucocorticoid receptor. Biometals. 2009;22(6):995–1009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rueli RH, et al. Selenoprotein S Reduces Endoplasmic Reticulum Stress-Induced Phosphorylation of Tau: Potential Role in Selenate Mitigation of Tau Pathology. J Alzheimers Dis. 2017;55(2):749–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saito Y, et al. Selenoprotein P in human plasma as an extracellular phospholipid hydroperoxide glutathione peroxidase. Isolation and enzymatic characterization of human selenoprotein p. J Biol Chem. 1999;274(5):2866–71.

    Article  CAS  PubMed  Google Scholar 

  • Saito Y, et al. Domain structure of bi-functional selenoprotein P. Biochem J. 2004;381(Pt 3):841–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoenmakers E, et al. Mutations in the selenocysteine insertion sequence-binding protein 2 gene lead to a multisystem selenoprotein deficiency disorder in humans. J Clin Invest. 2010;120(12):4220–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schweizer U, et al. Efficient selenium transfer from mother to offspring in selenoprotein-P-deficient mice enables dose-dependent rescue of phenotypes associated with selenium deficiency. Biochem J. 2004;378(Pt 1):21–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seale LA, et al. Disruption of the selenocysteine lyase-mediated selenium recycling pathway leads to metabolic syndrome in mice. Mol Cell Biol. 2012;32(20):4141–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheng XQ, Huang KX, Xu HB. Influence of alloxan-induced diabetes and selenite treatment on blood glucose and glutathione levels in mice. J Trace Elem Med Biol. 2005;18(3):261–7.

    Article  CAS  PubMed  Google Scholar 

  • Simic A, et al. Trace element status in patients with type 2 diabetes in Norway: the HUNT3 survey. J Trace Elem Med Biol. 2017;41:91–8.

    Article  CAS  PubMed  Google Scholar 

  • Souness JE, Stouffer JE, Chagoya de Sanchez V. The effect of selenium-deficiency on rat fat-cell glucose oxidation. Biochem J. 1983;214(2):471–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Speckmann B, et al. Selenoprotein P expression is controlled through interaction of the coactivator PGC-1alpha with FoxO1a and hepatocyte nuclear factor 4alpha transcription factors. Hepatology. 2008;48(6):1998–2006.

    Article  CAS  PubMed  Google Scholar 

  • Stahel P, et al. Supranutritional selenium intake from enriched milk casein impairs hepatic insulin sensitivity via attenuated IRS/PI3K/AKT signaling and decreased PGC-1alpha expression in male Sprague-Dawley rats. J Nutr Biochem. 2017;41:142–50.

    Article  CAS  PubMed  Google Scholar 

  • Stallings MT, et al. A high isoflavone diet decreases 5′ adenosine monophosphate-activated protein kinase activation and does not correct selenium-induced elevations in fasting blood glucose in mice. Nutr Res. 2014;34(4):308–17.

    Article  CAS  PubMed  Google Scholar 

  • Stapleton SR. Selenium: an insulin-mimetic. Cell Mol Life Sci. 2000;57(13–14):1874–9.

    Article  CAS  PubMed  Google Scholar 

  • Stapleton SR, et al. Selenium: potent stimulator of tyrosyl phosphorylation and activator of MAP kinase. Biochim Biophys Acta. 1997;1355(3):259–69.

    Article  CAS  PubMed  Google Scholar 

  • Steinbrenner H. Interference of selenium and selenoproteins with the insulin-regulated carbohydrate and lipid metabolism. Free Radic Biol Med. 2013;65:1538–47.

    Article  CAS  PubMed  Google Scholar 

  • Steinbrenner H, et al. High selenium intake and increased diabetes risk: experimental evidence for interplay between selenium and carbohydrate metabolism. J Clin Biochem Nutr. 2011;48(1):40–5.

    Article  CAS  PubMed  Google Scholar 

  • Steinbrenner H, et al. Localization and regulation of pancreatic selenoprotein P. J Mol Endocrinol. 2013;50(1):31–42.

    Article  CAS  PubMed  Google Scholar 

  • Stoffers DA, Stanojevic V, Habener JF. Insulin promoter factor-1 gene mutation linked to early-onset type 2 diabetes mellitus directs expression of a dominant negative isoprotein. J Clin Invest. 1998;102(1):232–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoytcheva Z, et al. Efficient incorporation of multiple selenocysteines involves an inefficient decoding step serving as a potential translational checkpoint and ribosome bottleneck. Mol Cell Biol. 2006;26(24):9177–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stranges S, et al. Effects of long-term selenium supplementation on the incidence of type 2 diabetes: a randomized trial. Ann Intern Med. 2007;147(4):217–23.

    Article  PubMed  Google Scholar 

  • Stranges S, et al. A prospective study of dietary selenium intake and risk of type 2 diabetes. BMC Public Health. 2010;10:564.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stranges S, et al. Associations of selenium status with cardiometabolic risk factors: an 8-year follow-up analysis of the Olivetti Heart study. Atherosclerosis. 2011;217(1):274–8.

    Article  CAS  PubMed  Google Scholar 

  • Su LQ, et al. Nail selenium level and diabetes in older people in rural China. Biomed Environ Sci. 2016;29(11):818–24.

    PubMed  Google Scholar 

  • Sunde RA, Raines AM. Selenium regulation of the selenoprotein andnonselenoprotein transcriptomes in rodents. Adv Nutr. 2011;2(2):138–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanguy Y, et al. The PACAP-regulated gene selenoprotein T is highly induced in nervous, endocrine, and metabolic tissues during ontogenetic and regenerative processes. Endocrinology. 2011;152(11):4322–35.

    Article  CAS  PubMed  Google Scholar 

  • Thompson JN, Scott ML. Impaired lipid and vitamin E absorption related to atrophy of the pancreas in selenium-deficient chicks. J Nutr. 1970;100(7):797–809.

    Article  CAS  PubMed  Google Scholar 

  • Thompson PA, et al. Selenium supplementation for prevention of colorectal adenomas and risk of associated type 2 diabetes. J Natl Cancer Inst. 2016;108(12):djw152.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ulusu NN, Turan B. Beneficial effects of selenium on some enzymes of diabetic rat heart. Biol Trace Elem Res. 2005;103(3):207–16.

    Article  CAS  PubMed  Google Scholar 

  • Vats P, et al. Association of Superoxide dismutases (SOD1 and SOD2) andGlutathione peroxidase 1 (GPx1) gene polymorphisms with type 2 diabetes mellitus. Free Radic Res. 2015;49(1):17–24.

    Article  CAS  PubMed  Google Scholar 

  • Vinceti M, et al. Toenail selenium and risk of type 2 diabetes: the ORDET cohort study. J Trace Elem Med Biol. 2015;29:145–50.

    Article  CAS  PubMed  Google Scholar 

  • Walder K, et al. Tanis: a link between type 2 diabetes and inflammation? Diabetes. 2002;51(6):1859–66.

    Article  CAS  PubMed  Google Scholar 

  • Walter PL, et al. Stimulation of selenoprotein P promoter activity in hepatoma cells by FoxO1a transcription factor. Biochem Biophys Res Commun. 2008;365(2):316–21.

    Article  CAS  PubMed  Google Scholar 

  • Wang H, et al. Foxa2 (HNF3beta) controls multiple genes implicated in metabolism-secretion coupling of glucose-induced insulin release. J Biol Chem. 2002;277(20):17564–70.

    Article  CAS  PubMed  Google Scholar 

  • Wang XD, et al. Molecular mechanisms for hyperinsulinaemia induced by overproduction of selenium-dependent glutathione peroxidase-1 in mice. Diabetologia. 2008;51(8):1515–24.

    Article  CAS  PubMed  Google Scholar 

  • Wang X, et al. Knockouts of SOD1 and GPX1 exert different impacts on murine islet function and pancreatic integrity. Antioxid Redox Signal. 2011;14(3):391–401.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang X, et al. High selenium impairs hepatic insulin sensitivity through opposite regulation of ROS. Toxicol Lett. 2014;224(1):16–23.

    Article  CAS  PubMed  Google Scholar 

  • Wang XL, et al. Association between serum selenium level and type 2 diabetes mellitus: a non-linear dose-response meta-analysis of observational studies. Nutr J. 2016;15(1):48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Y, et al. High dietary selenium intake is associated with less insulin resistance in the Newfoundland population. PLoS One. 2017;12(4):e0174149.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Watson JD. Type 2 diabetes as a redox disease. Lancet. 2014;383(9919):841–3.

    Article  PubMed  Google Scholar 

  • Wei J, et al. The association between dietary selenium intake and diabetes: a cross-sectional study among middle-aged and older adults. Nutr J. 2015;14:18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Whiting DR, et al. IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract. 2011;94(3):311–21.

    Article  PubMed  Google Scholar 

  • Xia Y, et al. Optimization of selenoprotein P and other plasma selenium biomarkers for the assessment of the selenium nutritional requirement: a placebo-controlled, double-blind study of selenomethionine supplementation in selenium-deficient Chinese subjects. Am J Clin Nutr. 2010;92(3):525–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiang LR, et al. The supranutritional selenium status alters blood glucose and pancreatic redox homeostasis via a modulated selenotranscriptome in chickens (Gallus gallus). RSC Adv. 2017;7(39):24438–45.

    Article  Google Scholar 

  • Yalakanti D, Dolia PB. Association of type II 5’ monodeiodinase Thr92Ala single nucleotide gene polymorphism and circulating thyroid hormones among type 2 diabetes mellitus patients. Indian J Clin Biochem. 2016;31(2):152–61.

    Article  CAS  PubMed  Google Scholar 

  • Yan X, et al. Dietary selenium deficiency partially rescues type 2 diabetes-like phenotypes of glutathione peroxidase-1-overexpressing male mice. J Nutr. 2012;142(11):1975–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang SJ, et al. Serum selenoprotein P levels in patients with type 2 diabetes and prediabetes: implications for insulin resistance, inflammation, and atherosclerosis. J Clin Endocrinol Metab. 2011;96(8):E1325–9.

    Article  CAS  PubMed  Google Scholar 

  • Yasui S, et al. Hydrogen peroxide inhibits insulin-induced ATP-sensitive potassium channel activation independent of insulin signaling pathway in cultured vascular smooth muscle cells. J Med Investig. 2012;59(1–2):36–44.

    Article  Google Scholar 

  • Ye Y, et al. A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol. Nature. 2004;429(6994):841–7.

    Article  CAS  PubMed  Google Scholar 

  • Yin Y, et al. Identification of risk factors affecting impaired fasting glucose and diabetes in adult patients from Northeast China. Int J Environ Res Public Health. 2015;12(10):12662–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu SS, Du JL. Selenoprotein S: a therapeutic target for diabetes and macroangiopathy? Cardiovasc Diabetol. 2017;16(1):101.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuan Z, et al. High levels of plasma selenium are associated with metabolic syndrome and elevated fasting plasma glucose in a Chinese population: a case-control study. J Trace Elem Med Biol. 2015;32:189–94.

    Article  CAS  PubMed  Google Scholar 

  • Zeng J, Zhou J, Huang K. Effect of selenium on pancreatic proinflammatory cytokines in streptozotocin-induced diabetic mice. J Nutr Biochem. 2009;20(7):530–6.

    Article  CAS  PubMed  Google Scholar 

  • Zeng MS, et al. A high-selenium diet induces insulin resistance in gestating rats and their offspring. Free Radic Biol Med. 2012;52(8):1335–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Chen X. Reducing selenoprotein P expression suppresses adipocyte differentiation as a result of increased preadipocyte inflammation. Am J Physiol Endocrinol Metab. 2011;300(1):E77–85.

    Article  CAS  PubMed  Google Scholar 

  • Zhang CY, et al. Uncoupling protein-2 negatively regulates insulin secretion and is a major link between obesity, beta cell dysfunction, and type 2 diabetes. Cell. 2001;105(6):745–55.

    Article  CAS  PubMed  Google Scholar 

  • Zhang N, et al. Molecular characterization and NF-kappaB-regulated transcription of selenoprotein S from the Bama mini-pig. Mol Biol Rep. 2011;38(7):4281–6.

    Article  CAS  PubMed  Google Scholar 

  • Zhao Z, et al. High dietary selenium intake alters lipid metabolism and protein synthesis in liver and muscle of pigs. J Nutr. 2016;146(9):1625–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Huang K, Lei XG. Selenium and diabetes—evidence from animal studies. Free Radic Biol Med. 2013;65:1548–56.

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, et al. Selenite exacerbates hepatic insulin resistance in mouse model of type 2 diabetes through oxidative stress-mediated JNK pathway. Toxicol Appl Pharmacol. 2015a;289(3):409–18.

    Article  CAS  PubMed  Google Scholar 

  • Zhou JC, et al. Multifaceted and intriguing effects of selenium and selenoproteins on glucose metabolism and diabetes. In: Brigelius-Flohe R, Sies H, editors. Diversity of selenium functions in health and disease. Boca Raton, FL: CRC Press; 2015b. p. 217–46.

    Chapter  Google Scholar 

  • Zhuo H, Smith AH, Steinmaus C. Selenium and lung cancer: a quantitative analysis of heterogeneity in the current epidemiological literature. Cancer Epidemiol Biomark Prev. 2004;13(5):771–8.

    CAS  Google Scholar 

Download references

Acknowledgments

Research in the authors’ laboratories was supported in part by NIH DK53018 and NSFC Projects 30628019, 30700585, 30871844, 31320103920, 81172669, 81372993, and 31270870. No conflict of interest is claimed by all the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Gen Lei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhou, JC., Zhou, J., Su, L., Huang, K., Lei, X.G. (2018). Selenium and Diabetes. In: Michalke, B. (eds) Selenium. Molecular and Integrative Toxicology. Springer, Cham. https://doi.org/10.1007/978-3-319-95390-8_17

Download citation

Publish with us

Policies and ethics