Skip to main content

Vadose Zone Remediation of Dense Nonaqueous Phase Liquid Residuals Using Foam-Based Nanoscale Zerovalent Iron Particles with Low-Frequency Electromagnetic Field

  • Chapter
  • First Online:
Nanoscale Zerovalent Iron Particles for Environmental Restoration
  • 940 Accesses

Abstract

This chapter presents a novel combined remedy using foam-based NZVI (F-NZVI) for vadose zone remediation of volatile organic compound (VOC) contamination. Conceptually, F-NZVI serves two remedial actions. First, F-NZVI can flush the VOC or nonaqueous phase liquid (NAPL) from the soil. Second, in addition to flushing NAPL from the soil, the NZVI that is deposited on the soil grain, if electromagnetically induced by a low-frequency (LF) electromagnetic field (EMF) (Chap. 11), should generate heat and speed up VOC removal in the vadose zone via thermally enhanced volatilization when used with soil vapor extraction (SVE). This chapter reviews the use of various surfactants to produce foam and F-NZVI for soil flushing. Moreover, characterization and transport experiments of foam and F-NZVI in unsaturated porous media demonstrate the thermally enhanced evaporation of VOCs using F-NZVI and LF EMF (up to 40 times enhanced evaporation of trichloroethylene). The feasibility of this novel approach is compared with a thermally enhanced SVE using radio-frequency heating (RFH) without F-NZVI. The chapter points out that using F-NZVI with LF EMF could theoretically be an alternative to RFH because it does not require as high of an irradiation frequency as RFH and should lead to lower capital and operational costs versus RFH.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abreu, L. D. V., & Johnson, P. C. (2005). Effect of vapor source−building separation and building construction on soil vapor intrusion as studied with a three-dimensional numerical model. Environmental Science & Technology, 39(12), 4550–4561.

    Article  CAS  Google Scholar 

  • Babakhani, P., Fagerlund, F., Shamsai, A., Lowry, G. V., & Phenrat, T. (2015). Modified MODFLOW-based model for simulating the agglomeration and transport of polymer-modified Fe0 nanoparticles in saturated porous media. Environmental Science and Pollution Research, 25(8), 7180–7199.

    Article  Google Scholar 

  • Bañobre-López, M., Teijeiro, A., & Rivas, J. (2013). Magnetic nanoparticle-based hyperthermia for cancer treatment. Reports of Practical Oncology and Radiotherapy, 18(6), 397–400.

    Article  Google Scholar 

  • Barbee, G. C. (2007). Fate of chlorinated aliphatic hydrocarbons in the vadose zone and ground water. Ground Water Monitoring and Remediation, 14(1), 129–140.

    Article  Google Scholar 

  • Bardos, P., Bone, B., ÄŒerník, M., Elliott, D. W., Jones, S., & Merly, C. (2015). Nanoremediation and international environmental restoration markets. Remediation Journal, 25(2), 83–94.

    Article  Google Scholar 

  • Bera, A., & Babadagli, T. (2015). Status of electromagnetic heating for enhanced heavy oil/bitumen recovery and future prospects: A review. Applied Energy, 151, 206–226.

    Article  CAS  Google Scholar 

  • Beyke, G., & Fleming, D. (2005). In situ thermal remediation of DNAPL and LNAPL using electrical resistance heating. Remediation Journal, Summer, 5–22.

    Article  Google Scholar 

  • Bientinesi, M., Scali, C., & Petarca, L. (2015). Radio frequency heating for oil recovery and soil remediation (pp. 1199–1204). Whistler, BC, Canada: The International Federation of Automatic Control.

    Google Scholar 

  • Binks, B. P., Kirkland, M., & Rodrigues, J. A. (2008). Origin of stabilisation of aqueous foams in nanoparticle–surfactant mixtures. Soft Matter, 4, 2373–2382.

    Article  CAS  Google Scholar 

  • Boulding, J. R., & Ginn, J. S. (2003). Practical handbook of soil, vadose zone, and ground-water contamination: Assessment, prevention, and remediation. New York: CRC Press.

    Google Scholar 

  • Brusseau, M. L., Carroll, K. C., Truex, M. J., & Becker, D. J. (2013). Characterization and remediation of chlorinated volatile organic contaminants in the vadose zone. Vadose Zone Journal, 12(4). https://doi.org/10.2136/vzj2012.0137.

    Article  CAS  Google Scholar 

  • Chen, M. Y., Su, Y. F., & Shih, Y. H. (2014). Effect of geochemical properties on degradation of trichloroethylene by stabilized zerovalent iron nanoparticle with Na-acrylic copolymer. Journal of Environmental Management, 144, 88–92.

    Article  CAS  Google Scholar 

  • Ding, Y., Liu, B., Shen, X., Zhong, L., & Li, X. (2013). Foam-assisted delivery of nanoscale zero valent iron in porous media. Journal of Environmental Engineering, 139(9), 1206–1212.

    Article  CAS  Google Scholar 

  • Fagerlund, F., Illanagasekare, T., & Niemi, A. (2007a). Nonaqueous-phase liquid infiltration and immobilization in heterogeneous media: 2. Application to stochastically heterogeneous formations. Vadose Zone Journal, 6(3), 483–495.

    Article  CAS  Google Scholar 

  • Fagerlund, F., Illangasekare, T., & Niemi, A. (2007b). Nonaqueous-phase liquid infiltration and immobilization in heterogeneous media: 1. Experimental methods and two-layered reference case. Vadose Zone Journal, 6(3), 471–482.

    Article  CAS  Google Scholar 

  • Fagerlund, F., Illangasekare, T. H., Phenrat, T., Kim, H.-J., & Lowry, G. V. (2012). PCE dissolution and simultaneous dechlorination by nanoscale zero-valent iron particles in a DNAPL source zone. Journal of Contaminant Hydrology, 131(1–4), 9–28.

    Article  CAS  Google Scholar 

  • Falciglia, P. P., Urso, G., & Vagliasindi, F. G. A. (2013). Microwave heating remediation of soils contaminated with diesel fuel. Journal of Soils and Sediments, 13, 1396–1407.

    Article  CAS  Google Scholar 

  • Gavaskar, A., Bhargava, M., & Condit, W. (2007). Cost and performance review of Electrical Resistance Heating (ERH) for source treatment (p. 121). Port Hueneme, CA: Naval Facilities Engineering Service Center.

    Book  Google Scholar 

  • Heron, G., Van Zutphen, M., Christensen, T. H., & Enfield, G. C. (1998). Soil heating for enhanced remediation of chlorinated solvents: A laboratory study on resistive heating and vapor extraction in a silty, low-permeable soil contaminated with trichloroethylene. Environmental Science & Technology, 32(10), 1474–1481.

    Article  CAS  Google Scholar 

  • Hirasaki, G. J., Miller, C. A., Szafranski, R., Lawson, J. B., Tanzil, D., Jackson, R. E., Londergan, J., & Meinardus, H. (1997). Field demonstration of the surfactant/foam process for aquifer remediation (p. SPE 39393). San Antonio, TX: Society of Petroleum Engineers. https://www.onepetro.org/conference-paper/SPE-39292-MS

  • Huang, C.-W., & Chang, C.-H. (2000). A laboratory study on foam-enhanced surfactant solution flooding in removing n-pentadecane from contaminated columns. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 173(1–3), 171–179.

    Article  CAS  Google Scholar 

  • Jackson, P. D., Williams, J. F., Lovell, M. A., Camps, A., Rochelle, C., & Milodowski, A. E. (2008). An investigation of the exponent in Archie’s equation: Comparing numerical modeling with laboratory data: Towards characterising disturbed samples from the Cascadia margin:- Iodp expedition 311 (pp. 1–11). Austin, TX: Society of Petrophysicists and Well-Log Analysts.

    Google Scholar 

  • Jeong, S.-W., Corapcioglu, M. Y., & Roosevelt, E. W. (2000). Micromodel study of surfactant foam remediation of residual trichloroethylene. Environmental Science & Technology, 34(16), 3456–3461.

    Article  Google Scholar 

  • Karn, B., Kuiken, T., & Otto, M. (2009). Nanotechnology and in situ remediation: A review of the benefits and potential risks. Environmental Health Perspectives, 117(12), 1823–1831.

    Article  Google Scholar 

  • Khristov, K., Exerowa, D., & Minkov, G. (2002). Critical capillary pressure for destruction of single foam films and foam: Effect of foam film size. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 210, 159–166.

    Article  CAS  Google Scholar 

  • Kilbane, J. J., II, Chowdiah, P., Kayser, K. J., Misra, B., Jackowski, K. A., Srivastava, V. J., Sethu, G. N., Nikolov, A. D., Wasan, D. T., & Hayes, T. D. (1997). Remediation of contaminated soils using foams. Land Contamination & Reclamation, 5, 41–54.

    Google Scholar 

  • Kommalapati, R. R., Valsaraj, K. T., Constant, W. D., & Roy, D. (1998). Soil flushing using colloid gas Aphron suspensions generated from a plant-based surfactant. Journal of Hazardous Materials, 60, 73–87.

    Article  CAS  Google Scholar 

  • Li, Z., Kawashita, M., Araki, N., Mitsumori, M., Hiraoka, M., & Doi, M. (2010). Magnetite nanoparticles with high heating efficiencies for application in the hyperthermia of cancer. Materials Science and Engineering: C, 30(7), 990–996.

    Article  CAS  Google Scholar 

  • Lim, J. K., Tilton, R. D., Eggman, A., & Majetich, S. A. (2007). Design and synthesis of plasmonic magnetic nanoparticles. Journal of Magnetism and Magnetic Materials, 311, 78–83.

    Article  CAS  Google Scholar 

  • Liu, Y., Phenrat, T., & Lowry, G. V. (2007). Effect of TCE concentration and dissolved groundwater solutes on NZVI-promoted TCE dechlorination and H2 evolution. Environmental Science & Technology, 41(22), 7881–7887.

    Article  CAS  Google Scholar 

  • Lowe, D. F., Oubre, C. L., & Ward, C. H. (1999). Soil vapor extraction using radio frequency heating: Resource manual and technology demonstration. New York: CRC Press.

    Google Scholar 

  • Lv, Q., Li, Z., Li, B., Li, S., & Sun, Q. (2015). Study of nanoparticle–surfactant-stabilized foam as a fracturing fluid. Industrial and Engineering Chemistry Research, 54(38), 9468–9477.

    Article  CAS  Google Scholar 

  • Lv, C., Chen, J., & Wang, X. (2017). Evaluation of surfactant performance in in situ foam flushing for remediation of dichlorodiphenyltrichloroethane-contaminated soil. International journal of Environmental Science and Technology, 14, 631–638.

    Article  CAS  Google Scholar 

  • Maire, J., & Fatin-Rouge, N. (2017). Surfactant foam flushing for in situ removal of DNAPLs in shallow soils. Journal of Hazardous Materials, 321, 247–255.

    Article  CAS  Google Scholar 

  • Mueller, N. C., Braun, J., Bruns, J., ÄŒerník, M., Rissing, P., Rickerby, D., & Nowack, B. (2012). Application of nanoscale zero valent iron (NZVI) for groundwater remediation in Europe. Environmental Science and Pollution Research, 19, 550–558.

    Article  CAS  Google Scholar 

  • Mulligan, C. N., & Eftekhari, F. (2003). Remediation with surfactant foam of PCP-contaminated soil. Engineering Geology, 70(3–4), 269–279.

    Article  Google Scholar 

  • Nakamura, T., Senior, C. L., Burns, E. G., & Bell, M. D. (2000). Solar-powered soil vapor extraction for removal of dense nonaqueous phase organics from soil. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 35(6), 795–816.

    Article  Google Scholar 

  • Pablico-Lansigan, M. H., Situa, S. F., & Samia, A. C. S. (2013). Magnetic particle imaging: Advancements and perspectives for real-time in vivo monitoring and image-guided therapy. Nanoscale, 5, 4040–4055.

    Article  CAS  Google Scholar 

  • Phenrat, T., Liu, Y., Tilton, R. D., & Lowry, G. V. (2009). Adsorbed polyelectrolyte coatings decrease Fe0 nanoparticle reactivity with TCE in water: Conceptual model and mechanisms. Environmental Science & Technology, 43(5), 1507–1514.

    Article  CAS  Google Scholar 

  • Phenrat, T., Kim, H.-J., Fagerlund, F., Illangasekare, T., & Lowry, G. V. (2010a). Empirical correlations to estimate agglomerate size and deposition during injection of a polyelectrolyte-modified Fe0 nanoparticle at high particle concentration in saturated sand. Journal of Contaminant Hydrology, 118(3–4), 152–164.

    Article  CAS  Google Scholar 

  • Phenrat, T., Kim, H.-J., Fagerlund, F., Illangasekare, T., & Lowry, G. V. (2010b). Empirical correlations to estimate agglomerate size and deposition during injection of a polyelectrolyte-modified Fe0 nanoparticle at high particle concentration in saturated sand. Journal of Contaminant Hydrology, 118(3–4), 152–164.

    Article  CAS  Google Scholar 

  • Phenrat, T., Song, J. E., Cisneros, C. M., Schoenfelder, D. P., Tilton, R. D., & Lowry, G. V. (2010c). Estimating attachment of nano- and submicrometer-particles coated with organic macromolecules in porous media: Development of an empirical model. Environmental Science & Technology, 44(12), 4531–4538.

    Article  CAS  Google Scholar 

  • Phenrat, T., Fagerlund, F., Illanagasekare, T., Lowry, G. V., & Tilton, R. D. (2011). Polymer-modified Fe0 nanoparticles target entrapped NAPL in two dimensional porous media: Effect of particle concentration, NAPL saturation, and injection strategy. Environmental Science & Technology, 45(14), 6102–6109.

    Article  CAS  Google Scholar 

  • Phenrat, T., Schoenfelder, D., Kirschling, T. L., Tilton, R. D., & Lowry, G. V. (2018). Adsorbed poly(aspartate) coating limits the adverse effects of dissolved groundwater solutes on Fe0 nanoparticle reactivity with trichloroethylene. Environmental Science & Pollution Research, 25(8), 7157–7169.

    Article  Google Scholar 

  • Poppendieck, D. G., Loehr, R. C., & Webster, M. T. (1999a). Predicting hydrocarbon removal from thermally enhanced soil vapor extraction systems. 1. Laboratory studies. Journal of Hazardous Materials, 69(1), 81–93.

    Article  CAS  Google Scholar 

  • Poppendieck, D. G., Loehr, R. C., & Webster, M. T. (1999b). Predicting hydrocarbon removal from thermally enhanced soil vapor extraction systems: 2. Field study. Journal of Hazardous Materials, 69(11), 95–109.

    Article  CAS  Google Scholar 

  • Price, S. L., Kasevich, R. S., Johnson, M. A., Wiberg, D., & Marley, M. C. (1999). Radio frequency heating for soil remediation. Journal of the Air & Waste Management Association, 49(2), 136–145.

    Article  CAS  Google Scholar 

  • Revil, A. (2013). Effective conductivity and permittivity of unsaturated porous materials in the frequency range 1 mHz–1GHz. Water Resources Research, 49, 306–327.

    Article  CAS  Google Scholar 

  • Rizzoni, G. (2004). Principles and applications of electrical engineering. New York: McGraw-Hill Inc.

    Google Scholar 

  • Roland, U., Buchenhorst, D., Holzer, F., & Kopinke, F. D. (2008). Engineering aspects of radio-wave heating for soil remediation and compatibility with biodegradation. Environmental Science & Technology, 42(4), 1232–1237.

    Article  CAS  Google Scholar 

  • Ronen, D., Graber, E. R., & Laor, Y. (2004). Volatile organic compounds in the saturated–unsaturated Interface region of a contaminated phreatic aquifer. Vadose Zone Journal, 4(2), 337–344.

    Article  Google Scholar 

  • Rothmel, R. K., Peters, R. W., St. Martin, E., & DeFlaun, M. F. (1998). Surfactant foam/bioaugmentation technology for in situ treatment of TCE-DNAPLs. Environmental Science & Technology, 32, 1667–1675.

    Article  CAS  Google Scholar 

  • Saiers, J. E., & Lenhart, J. J. (2003). Colloid mobilization and transport within unsaturated porous media under transient-flow conditions. Water Resources Research, 39(1), 1019.

    Article  Google Scholar 

  • Sakulchaicharoen, N., O’Carroll, D. M., & Herrera, J. E. (2010). Enhanced stability and dechlorination activity of pre-synthesis stabilized nanoscale FePd particles. Journal of Contaminant Hydrology, 118(3–4), 117–127.

    Article  CAS  Google Scholar 

  • Saleh, N., Phenrat, T., Sirk, K., Dufour, B., Ok, J., Sarbu, T., Matyjaszewski, K., Tilton, R. D., & Lowry, G. V. (2005). Adsorbed triblock copolymers deliver reactive iron nanoparticles to the oil/water interface. Nano Letters, 5(12), 2489–2494.

    Article  CAS  Google Scholar 

  • Shen, X., Zhao, L., Ding, Y., Liu, B., Zeng, H., Zhong, L., & Li, X. (2011). Foam, a promising vehicle to deliver nanoparticles for vadose zone remediation. Journal of Hazardous Materials, 186(2–3), 1773–1780.

    Article  CAS  Google Scholar 

  • Smith, L. A., & Hinchee, R. E. (1993). In situ thermal technologies for site remediation. Boca Raton: CRC Press.

    Google Scholar 

  • Srirattana, S., Piaowan, K., Lowry, G. V., & Phenrat, T. (2017). Electromagnetic induction of foam-based nanoscale Zerovalent Iron (NZVI) particles to thermally enhance non-aqueous phase liquid (NAPL) volatilization in unsaturated porous media: Proof of concept. Chemosphere, 183, 323–331.

    Article  CAS  Google Scholar 

  • Tratnyek, P. G., & Johnson, R. L. (2006). Nanotechnologies for environmental cleanup. Nano Today, 1(2), 44–48.

    Article  Google Scholar 

  • Truex, M. J., Gillie, J. M., Powers, J. G., & Lynch, K. P. (2009). Assessment of in situ thermal treatment for chlorinated organic source zones. Remediation Journal, 19(2), 7–17.

    Article  Google Scholar 

  • Vermeulen, F., & McGee, B. (2000). In-situ electromagnetic heating for hydrocarbon recovery and environmental remediation. Journal of Canadian Petroleum Technology, 39(8), 25–29.

    Article  Google Scholar 

  • Wang, H., & Chen, J. (2012). Enhanced flushing of polychlorinated biphenyls contaminated sands using surfactant foam: Effect of partition coefficient and sweep efficiency. Journal of Environmental Sciences (China), 24(7), 1270–1277.

    Article  CAS  Google Scholar 

  • Wang, X., Chen, J., & Lv, C. (2015). Evaluation of foam surfactant for foam-flushing technique in remediation of DDT-contaminated soil using data envelopment analysis method. Environmental Science and Pollution Research, 22(4), 2994–3003.

    Article  CAS  Google Scholar 

  • Wei, Y. T., Wu, S. C., Yang, S. W., Che, C. H., Lien, H. L., & Huang, D. H. (2012). Biodegradable surfactant stabilized nanoscale zero-valent iron for in situ treatment of vinyl chloride and 1,2-dichloroethane. Journal of Hazardous Materials, 211–212, 373–380.

    Article  Google Scholar 

  • Werth, C. J., & Reinhard, M. (1997). Effects of temperature on trichloroethylene desorption from silica gel and natural sediments. 2. Kinetics. Environmental Science & Technology, 31, 697–703.

    Article  CAS  Google Scholar 

  • Yang, J.-W., Cho, H.-J., Choi, G.-Y., & Lee, S.-H. (2001). Cost-effective monitoring for a soil vapor extraction (SVE) system. A simplified modeling and gas sensor test. Environmental Monitoring and Assessment, 70(1), 201–210.

    Article  CAS  Google Scholar 

  • Yoon, H., Valocchi, A. J., & Werth, C. J. (2003). Modeling the influence of water content on soil vapor extraction. Vadose Zone Journal, 2, 368–381.

    Article  CAS  Google Scholar 

  • Zhang, W. (2003). Nanoscale iron particles for environmental remediation: An overview. Journal of Nanoparticle Research, 5, 323–332.

    Article  CAS  Google Scholar 

  • Zhang, W.-X., Wang, C.-B., & Lien, H.-L. (1998). Treatment of chlorinated organic contaminants with nanoscale bimetallic particles. Catalysis Today, 40, 387–395.

    Article  CAS  Google Scholar 

  • Zhao, Y. S., Su, Y., Lian, J. R., Wang, H. F., Li, L. L., & Qin, C. Y. (2016). Insights on flow behavior of foam in unsaturated porous media during soil Flushing. Water Environment Research, 88(11), 2132–2141.

    Article  CAS  Google Scholar 

  • Zhong, L., Szecsody, J. E., Zhang, F., & Mattigod, S. V. (2010). Foam delivery of amendments for vadose zone remediation: Propagation performance in unsaturated sediments. Vadose Zone Journal, 9, 757–767.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful for the research funding from (1) the Thailand Research Fund (TRF) (MRG5680129); (2) the National Nanotechnology Center (Thailand), a member of the National Science and Technology Development Agency, through grant number P-11-00989; and (3) the National Research Council (R2556B070).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Phenrat, T., Lowry, G.V. (2019). Vadose Zone Remediation of Dense Nonaqueous Phase Liquid Residuals Using Foam-Based Nanoscale Zerovalent Iron Particles with Low-Frequency Electromagnetic Field. In: Phenrat, T., Lowry, G. (eds) Nanoscale Zerovalent Iron Particles for Environmental Restoration. Springer, Cham. https://doi.org/10.1007/978-3-319-95340-3_13

Download citation

Publish with us

Policies and ethics