Skip to main content
Log in

Evaluation of surfactant performance in in situ foam flushing for remediation of dichlorodiphenyltrichloroethane-contaminated soil

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

The aim of this study was to select the appropriate surfactant for the remediation of dichlorodiphenyltrichloroethane-contaminated soil using an in situ foam-flushing technique. The research investigated the performance of the nonionic surfactants polyethylene glycol octyl phenyl ether, polysorbate, and polyoxyethylene lauryl ether, as well as the anionic surfactant sodium dodecyl sulfate, in foam static characteristics, solubility enhancement of dichlorodiphenyltrichloroethane, adsorption loss onto soil, and dichlorodiphenyltrichloroethane desorption from contaminated soil using a foam-flushing approach. Considering the above four criteria, the overall performance suggested polyethylene glycol octyl phenyl ether should be selected for the remediation of dichlorodiphenyltrichloroethane-contaminated soil due to its better foamability and stability, relatively high solubilization ability for dichlorodiphenyltrichloroethane, and greatest contaminant desorption efficiency from soil via foam flushing. Results of the dichlorodiphenyltrichloroethane desorption experiments showed that desorption efficiency of dichlorodiphenyltrichloroethane by different surfactants was largely influenced by foam static characteristics and solubility enhancement of dichlorodiphenyltrichloroethane rather than adsorption loss onto soil, which indicated that foam static characteristics and solubilization ability of surfactants were two key criteria for selection of high-performance foam surfactant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahn CK, Kim YM, Woo SH, Park JM (2008) Soil washing using various nonionic surfactants and their recovery by selective adsorption with activated carbon. J Hazard Mater 154:153–160

    Article  CAS  Google Scholar 

  • Badr T, Hanna K, de Brauer C (2004) Enhanced solubilization and removal of naphthalene and phenanthrene by cyclodextrins from two contaminated soils. J Hazard Mater 112:215–223

    Article  CAS  Google Scholar 

  • Bera A, Kumar T, Ojha K, Mandal A (2013) Adsorption of surfactants on sand surface in enhanced oil recovery: isotherms, kinetics and thermodynamic studies. Appl Surf Sci 284:87–99

    Article  CAS  Google Scholar 

  • Brockman F, Payne W, Workman D, Soong A, Manley S, Hazen T (1995) Effect of gaseous nitrogen and phosphorus injection on in situ bioremediation of a trichloroethylene-contaminated site. J Hazard Mater 41:287–298

    Article  CAS  Google Scholar 

  • Cao XY, Han HY, Yang GP, Gong XF, Jing JN (2011) The sorption behavior of DDT onto sediment in the presence of surfactant cetyltrimethylammonium bromide. Mar Pollut Bull 62:2370–2376

    Article  CAS  Google Scholar 

  • Chu W, Kwan CY (2003) Remediation of contaminated soil by a solvent/surfactant system. Chemosphere 53:9–15

    Article  CAS  Google Scholar 

  • Edwards DA, Luthy RG, Liu Z (1991) Solubilization of polycyclic aromatic hydrocarbons in micellar nonionic surfactant solutions. Environ Sci Technol 25:127–133

    Article  CAS  Google Scholar 

  • Ettinger R, Radke C (1992) Influence of texture on steady foam flow in Berea sandstone. SPE Reserv Eng 7:83–90

    Article  CAS  Google Scholar 

  • Fu J, Mai B, Sheng G, Zhang G, Wang X, Pa Peng et al (2003) Persistent organic pollutants in environment of the Pearl River Delta, China: an overview. Chemosphere 52:1411–1422

    Article  CAS  Google Scholar 

  • Huang C-W, Chang C-H (2000) A laboratory study on foam-enhanced surfactant solution flooding in removing n-pentadecane from contaminated columns. Colloids Surf A 173:171–179

    Article  CAS  Google Scholar 

  • Kile DE, Chiou CT (1989) Water solubility enhancements of DDT and trichlorobenzene by some surfactants below and above the critical micelle concentration. Environ Sci Technol 23:832–838

    Article  CAS  Google Scholar 

  • Kovscek A, Bertin H (2003) Foam mobility in heterogeneous porous media. Transp Porous Media 52:17–35

    Article  Google Scholar 

  • Kurt-Karakus PB, Bidleman TF, Staebler RM, Jones KC (2006) Measurement of DDT fluxes from a historically treated agricultural soil in Canada. Environ Sci Technol 40:4578–4585

    Article  CAS  Google Scholar 

  • Lopez-Vizcaino R, Saez C, Canizares P, Rodrigo MA (2012) The use of a combined process of surfactant-aided soil washing and coagulation for PAH-contaminated soils treatment. Sep Purif Technol 88:46–51

    Article  CAS  Google Scholar 

  • Mulligan CN, Eftekhari F (2003) Remediation with surfactant foam of PCP-contaminated soil. Eng Geol 70:269–279

    Article  Google Scholar 

  • Pandit GG, Sahu SK, Sharma S, Puranik V (2006) Distribution and fate of persistent organochlorine pesticides in coastal marine environment of Mumbai. Environ Int 32:240–243

    Article  CAS  Google Scholar 

  • Paria S, Manohar C, Khilar KC (2005) Adsorption of anionic and non-ionic surfactants on a cellulosic surface. Colloids Surf A 252:221–229

    Article  CAS  Google Scholar 

  • Rothmel RK, Peters RW, St Martin E, Deflaun MF (1998) Surfactant foam bioaugmentation technology for in situ treatment of TCE-DNAPLs. Environ Sci Technol 32:1667–1675

    Article  CAS  Google Scholar 

  • Roy D, Tamayo A, Valsaraj K (1992) Comparison of soil washing using conventional surfactant solutions and colloidal gas aphron suspensions. Sep Sci Technol 27:1555–1568

    Article  CAS  Google Scholar 

  • Sayles GD, You GR, Wang MX, Kupferle MJ (1997) DDT, DDD, and DDE dechlorination by zero-valent iron. Environ Sci Technol 31:3448–3454

    Article  CAS  Google Scholar 

  • Shen X, Zhao L, Ding Y, Liu B, Zeng H, Zhong L et al (2011) Foam, a promising vehicle to deliver nanoparticles for vadose zone remediation. J Hazard Mater 186:1773–1780

    Article  CAS  Google Scholar 

  • Singh SP, Bose P, Guha S, Gurjar SK, Bhalekar S (2013) Impact of addition of amendments on the degradation of DDT and its residues partitioned on soil. Chemosphere 92:811–820

    Article  CAS  Google Scholar 

  • Smith E, Smith J, Naidu R, Juhasz AL (2004) Desorption of DDT from a contaminated soil using cosolvent and surfactant washing in batch experiments. Water Air Soil Pollut 151:71–86

    Article  CAS  Google Scholar 

  • Tehrani-Bagha AR, Singh R, Holmberg K (2013) Solubilization of two organic dyes by anionic, cationic and nonionic surfactants. Colloids Surf A 417:133–139

    Article  CAS  Google Scholar 

  • Thangavadivel K, Megharaj M, Smart RSC, Lesniewski PJ, Bates D, Naidu R (2010) Ultrasonic enhanced desorption of DDT from contaminated soils. Water Air Soil Pollut 217:115–125

    Article  Google Scholar 

  • Walters GW, Aitken MD (2001) Surfactant-enhanced solubilization and anaerobic biodegradation of 1,1,1-trichloro-2,2-bis(p-chlorophenyl)-ethane (DDT) in contaminated soil. Water Environ Res 73:15–23

    Article  CAS  Google Scholar 

  • Wang H, Chen J (2012) Enhanced flushing of polychlorinated biphenyls contaminated sands using surfactant foam: effect of partition coefficient and sweep efficiency. J Environ Sci 24:1270–1277

    Article  CAS  Google Scholar 

  • Wang SL, Mulligan CN (2004) Rhamnolipid foam enhanced remediation of cadmium and nickel contaminated soil. Water Air Soil Pollut 157:315–330

    Article  CAS  Google Scholar 

  • Wang Y, He W, Qin N, He Q-S, Kong X-Z, Tao S et al (2013) Distributions, sources, and ecological risks of DDT-related contaminants in water, suspended particulate matter, and sediments from Haihe Plain, Northern China. Environ Monit Assess 185:1777–1790

    Article  CAS  Google Scholar 

  • Wong MH, Leung AO, Chan JK, Choi MP (2005) A review on the usage of POP pesticides in China, with emphasis on DDT loadings in human milk. Chemosphere 60:740–752

    Article  CAS  Google Scholar 

  • Wu N, Zhang S, Huang H, Shan X, Christie P, Wang Y (2008) DDT uptake by arbuscular mycorrhizal alfalfa and depletion in soil as influenced by soil application of a non-ionic surfactant. Environ Pollut 151:569–575

    Article  CAS  Google Scholar 

  • Yao FX, Yu GF, Wang F, Yang XL, Jiang X (2008) Aging activity of DDE in dissimilar rice soils in a greenhouse experiment. Chemosphere 71:1188–1195

    Article  CAS  Google Scholar 

  • Younas A, Hilber I, Rehman Su, Khwaja M, Bucheli TD (2013) Former DDT factory in Pakistan revisited for remediation: severe DDT concentrations in soils and plants from within the area. Environ Sci Pollut Res 20:1966–1976

    Article  CAS  Google Scholar 

  • Yuan S, Shu Z, Wan J, Lu X (2007) Enhanced desorption of hexachlorobenzene from kaolin by single and mixed surfactants. J Colloid Interface Sci 314:167–175

    Article  CAS  Google Scholar 

  • Zheng G, Selvam A, Wong JW (2012) Enhanced solubilization and desorption of organochlorine pesticides (OCPs) from soil by oil-swollen micelles formed with a nonionic surfactant. Environ Sci Technol 46:12062–12068

    Article  CAS  Google Scholar 

  • Zhong L, Qafoku NP, Szecsody JE, Dresel PE, Zhang ZF (2009) Foam delivery of calcium polysulfide to the vadose zone for chromium(VI) immobilization: a laboratory evaluation. Vadose Zone J 8:976

    Article  CAS  Google Scholar 

  • Zhong L, Szecsody J, Oostrom M, Truex M, Shen X, Li X (2011) Enhanced remedial amendment delivery to subsurface using shear thinning fluid and aqueous foam. J Hazard Mater 191:249–257

    Article  CAS  Google Scholar 

  • Zhou W, Zhu L (2008) Influence of surfactant sorption on the removal of phenanthrene from contaminated soils. Environ Pollut 152:99–105

    Article  CAS  Google Scholar 

  • Zhu L, Feng S (2003) Synergistic solubilization of polycyclic aromatic hydrocarbons by mixed anionic–nonionic surfactants. Chemosphere 53:459–467

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 41272248) and the National Science and Technology Support Program (No. 2011BAC12B02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Chen.

Additional information

Editorial responsibility: M. Abbaspour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, C., Chen, J. & Wang, X. Evaluation of surfactant performance in in situ foam flushing for remediation of dichlorodiphenyltrichloroethane-contaminated soil. Int. J. Environ. Sci. Technol. 14, 631–638 (2017). https://doi.org/10.1007/s13762-016-1175-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-016-1175-0

Keywords

Navigation