Skip to main content

Increasing Light Extraction Using UV Curable SILs

  • Chapter
  • First Online:
Enhancing the Light Output of Solid-State Emitters

Part of the book series: Springer Theses ((Springer Theses))

  • 349 Accesses

Abstract

This chapter describes how a liquid based solid immersion lens (SIL) made from UV curable epoxy can be used to enhance the light output of a 2D material. The epoxy SIL described fully encapsulates the monolayer helping to prevent physical damage and degradation in air. Micro-photoluminescence results show a large intensity increase from a monolayer of tungsten diselenide (WSe2) combined with an increase in imaging resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Withers, F., et al. (2015). Light-emitting diodes by band-structure engineering in van derWaals heterostructures. Nature Materials, 14, 301–306.

    Article  ADS  Google Scholar 

  2. Buscema, M., Steele, G. A., van der Zant, H. S. J., & Castellanos-Gomez, A. (2014). The effect of the substrate on the Raman and photoluminescence emission of single-layer MoS2. Nano Research, 7, 561–571.

    Article  Google Scholar 

  3. Palacios-Berraquero, C., et al. (2016). Atomically thin quantum light-emitting diodes. Nature Communications, 7, 12978.

    Article  ADS  Google Scholar 

  4. Amani, M., et al. (2015). Near-unity photoluminescence quantum yield in MoS2. Science, 350, 1064.

    Article  ADS  Google Scholar 

  5. Gauck, H., Gfroerer, T. H., Renn, M. J., Cornell, E. A., & Bertness, K. A. (1997). External radiative quantum efficiency of 96% from a GaAs/GaInP heterostructure. Applied Physics A, 64, 143–147.

    Article  Google Scholar 

  6. Schnitzer, I., Yablonovitch, E., Caneau, C., & Gmitter, T. J. (1993). Ultrahigh spontaneous emission quantum efficiency, 99.7% internally and 72% externally, from AlGaAs/GaAs/AlGaAs double heterostructures. Applied Physics Letters, 62, 131–133.

    Article  ADS  Google Scholar 

  7. Gisin, N., Ribordy, G., Tittel, W., & Zbinden, H. (2002). Quantum cryptography. Reviews of Modern Physics, 74, 145–195.

    Article  ADS  Google Scholar 

  8. Presolski, S., & Pumera, M. (2016). Covalent functionalization of MoS2. Materials Today, 19, 140–145.

    Article  Google Scholar 

  9. Voiry, D., et al. (2015). Covalent functionalization of monolayered transition metal dichalcogenides by phase engineering. Nature Chemistry, 7, 45–49.

    Article  ADS  Google Scholar 

  10. Sobhani, A., et al. (2014). Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells. Applied Physics Letters, 104, 031112.

    Article  ADS  Google Scholar 

  11. Wang, Z., et al. (2016). Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures. Nature Communications, 7.

    Article  ADS  Google Scholar 

  12. Liu, X., et al. (2015). Strong light–matter coupling in two-dimensional atomic crystals. Nature Photonics, 9, 30–34.

    Article  ADS  Google Scholar 

  13. Gan, X., et al. (2013). Controlling the spontaneous emission rate of monolayer MoS2 in a photonic crystal nanocavity. Applied Physics Letters, 103, 181119.

    Article  ADS  Google Scholar 

  14. Noori, Y. J., et al. (2016). Photonic crystals for enhanced light extraction from 2D materials. ACS Photonics, 3, 2515–2520.

    Article  Google Scholar 

  15. Woodhead, C. S., et al. (2017). Increasing the light extraction and longevity of TMDC monolayers using liquid formed micro-lenses. 2D Materials, 4, 015032.

    Article  Google Scholar 

  16. Gao, J., et al. (2016). Aging of transition metal dichalcogenide monolayers. ACS Nano, 10, 2628–2635.

    Article  Google Scholar 

  17. Dimastrodonato, V., Mereni, L. O., Young, R. J., & Pelucchi, E. (2010). Growth and structural characterization of pyramidal site-controlled quantum dots with high uniformity and spectral purity. Physica Status Solidi (b), 247, 1862–1866.

    Article  ADS  Google Scholar 

  18. Trojak, O. J., Park, S. I., Song, J. D., & Sapienza, L. (2017). Metallic nanorings for broadband, enhanced extraction of light from solid-state emitters.

    Google Scholar 

  19. Koperski, M., et al. (2015). Single photon emitters in exfoliated WSe2 structures. Nat Nano, 10, 503–506.

    Article  Google Scholar 

  20. Srivastava, A., et al. (2015). Optically active quantum dots in monolayer WSe2. Nature Nanotechnology, 10, 491–496.

    Article  ADS  Google Scholar 

  21. Eisaman, M. D., Fan, J., Migdall, A., & Polyakov, S. V. (2011). Invited review article: Single-photon sources and detectors. Review of Scientific Instruments, 82, 071101.

    Article  ADS  Google Scholar 

  22. Serrels, K. A., et al. (2008). Solid immersion lens applications for nanophotonic devices. NANOP, 2, 021854.

    Article  Google Scholar 

  23. Moehl, S., Zhao, H., Don, B. D., Wachter, S., & Kalt, H. (2003). Solid immersion lens-enhanced nano-photoluminescence: Principle and applications. Journal of Applied Physics, 93, 6265–6272.

    Article  ADS  Google Scholar 

  24. Yan, T., Qiao, X., Liu, X., Tan, P., & Zhang, X. (2014). Photoluminescence properties and exciton dynamics in monolayer WSe2. Applied Physics Letters, 105, 101901.

    Article  ADS  Google Scholar 

  25. Huang, J., Hoang, T. B., & Mikkelsen, M. H. (2016). Probing the origin of excitonic states in monolayer WSe2. Scientific Reports, 6, 22414.

    Article  ADS  Google Scholar 

  26. Eda, G., et al. (2011). Photoluminescence from chemically exfoliated MoS2. Nano Letters, 11, 5111–5116.

    Article  ADS  Google Scholar 

  27. Tosun, M., et al. (2016). Air-stable n-doping of WSe2 by anion vacancy formation with mild plasma treatment. ACS Nano, 10, 6853–6860.

    Article  Google Scholar 

  28. Li, J., et al. (2014). Tuning the optical emission of MoS2 nanosheets using proximal photoswitchable azobenzene molecules. Applied Physics Letters, 105, 241116.

    Article  ADS  Google Scholar 

  29. Podzorov, V., Gershenson, M. E., Kloc, C., Zeis, R., & Bucher, E. (2004). High-mobility field-effect transistors based on transition metal dichalcogenides. Applied Physics Letters, 84, 3301–3303.

    Article  ADS  Google Scholar 

  30. Allain, A., & Kis, A. (2014). Electron and hole mobilities in single-layer WSe2. ACS Nano, 8, 7180–7185.

    Article  Google Scholar 

  31. Mouri, S., Miyauchi, Y., & Matsuda, K. (2013). Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Letters, 13, 5944–5948.

    Article  ADS  Google Scholar 

  32. Scalise, E., Houssa, M., Pourtois, G., Afanas’ev, V., & Stesmans, A. (2012). Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2. Nano Research, 5, 43–48.

    Article  Google Scholar 

  33. Amin, B., Kaloni, T. P., & Schwingenschlogl, U. (2014). Strain engineering of WS2, WSe2, and WTe2. Rsc Advances, 4, 34561–34565.

    Article  Google Scholar 

  34. Corey, J., et al. (2016). MoS2 monolayers on nanocavities: enhancement in light–matter interaction. 2D Materials, 3, 025017.

    Article  Google Scholar 

  35. Branny, A., Kumar, S., Proux, R., & Gerardot, B. D. (2017). Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor. Nature Communications, 8, 15053.

    Article  ADS  Google Scholar 

  36. Duan, H., Hu, H., Kumar, K., Shen, Z., & Yang, J. K. W. (2011). Direct and reliable patterning of plasmonic nanostructures with Sub-10-nm gaps. ACS Nano, 5, 7593–7600.

    Article  Google Scholar 

  37. Siegfried, T., Ekinci, Y., Martin, O. J. F., & Sigg, H. (2013). Gap plasmons and near-field enhancement in closely packed sub-10 nm gap resonators. Nano Lett., 13, 5449–5453.

    Article  ADS  Google Scholar 

  38. Metzler, M. (2016). Reactive Ion Etch (RIE) of Silicon Dioxide (SiO 2 ) with Trifluoromethane and Oxygen (CHF 3 /O 2 ), http://repository.upenn.edu/scn_tooldata/38/.

  39. Green, T. A. (2014). Gold etching for microfabrication. Gold Bulletin, 47, 205–216.

    Article  Google Scholar 

  40. Efremov, A. M., Kim, D.-P., & Kim, C.-I. (2003). Etching characteristics and mechanism of Au thin films in inductively coupled Cl2/Ar plasma. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 21, 1837–1842.

    Article  ADS  Google Scholar 

  41. Bosman, M., et al. (2014). Encapsulated annealing: Enhancing the plasmon quality factor in lithographically-defined nanostructures. Scientific Reports, 4, 5537.

    Article  Google Scholar 

  42. Liu, Y., et al. (2013). Layer-by-layer thinning of MoS2 by plasma. ACS Nano, 7, 4202–4209.

    Article  Google Scholar 

  43. Xiao, S., et al. (2016). Atomic-layer soft plasma etching of MoS2. Scientific Reports, 6, 19945.

    Article  ADS  Google Scholar 

  44. Gutiérrez, H. R., et al. (2013). Extraordinary room-temperature photoluminescence in triangular WS2 Monolayers. Nano Letters, 13, 3447–3454.

    Article  ADS  Google Scholar 

  45. Kaplan, D., et al. (2016) Excitation intensity dependence of photoluminescence from monolayers of MoS2 and WS2/MoS2 heterostructures. 2D Materials, 3.

    Google Scholar 

  46. McCreary, K. M., Hanbicki, A. T., Jernigan, G. G., Culbertson, J. C., & Jonker, B. T. (2016). Synthesis of large-area WS2 monolayers with exceptional photoluminescence. Nano Letters, 6, 1.

    Article  Google Scholar 

  47. Berkdemir, A., et al. (2013). Identification of individual and few layers of WS2 using Raman Spectroscopy. Scientific Reports, 3, 1755.

    Article  Google Scholar 

  48. Cardinaud, C., Peignon, M.-C., & Tessier, P.-Y. (2000). Plasma etching: Principles, mechanisms, application to micro- and nano-technologies. Applied Surface Science, 164, 72–83.

    Article  ADS  Google Scholar 

  49. Agency, U. S. E. P. United States Environmental Protection Agency. Tungsten nitride (WN). (2017). https://comptox.epa.gov/dashboard/dsstoxdb/results?formula=1&isotopes=1&search=NW.

  50. Li, M.-Y., et al. (2015). Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface. Science, 349, 524.

    Article  ADS  Google Scholar 

  51. Guo, Y., & Robertson, J. (2016). Band engineering in transition metal dichalcogenides: Stacked versus lateral heterostructures. Applied Physics Letters, 108, 233104.

    Article  ADS  Google Scholar 

  52. Gong, Y., et al. (2014). Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nature Materials, 13, 1135–1142.

    Article  ADS  Google Scholar 

  53. Duan, X., et al. (2014). Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nature Nanotechnology, 9, 1024–1030.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Woodhead .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Woodhead, C. (2018). Increasing Light Extraction Using UV Curable SILs. In: Enhancing the Light Output of Solid-State Emitters. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-95013-6_6

Download citation

Publish with us

Policies and ethics