Extending Technology Acceptance Model for Proximity Mobile Payment via Organisational Semiotics

  • Yu-Chun PanEmail author
  • Aimee Jacobs
  • Chekfoung Tan
  • Sanaa Askool
Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 527)


The growth of mobile technologies and smartphones is reshaping the individual and organisational behaviour which affect the business environment. One of the key challenges of mobile payment is how to understand and manage user expectations and technology acceptance. Therefore, to better understand mobile payment use and acceptance, we need to analyse the factors and barriers that influence technology use. The investigation uses Technology Acceptance Model in conjunction with Organisational Semiotics, a socio-technical method of design, to overcome possible limitations addressed in research. This approach offers methods that can help to develop a research model for mobile payment use focusing on technical and social aspects.


Mobile payment Proximity mobile payment Technology Acceptance Model Organisational Semiotics Semiotics Adoption 


  1. 1.
    Statista: Total revenue of global mobile payment market from 2015 to 2019 (in billion U.S. dollars).
  2. 2.
    WorldPay: WorldPay Consumer Behaviour and Payments Report 2017: What’s driving today’s consumers? (2017)Google Scholar
  3. 3.
    Deloitte: Contactless mobile payments (finally) gain momentum (2015)Google Scholar
  4. 4.
    Liu, J., Kauffman, R.J., Ma, D.: Competition, cooperation, and regulation: understanding the evolution of the mobile payments technology ecosystem. Electron. Commer. Res. Appl. 14, 372–391 (2015). Scholar
  5. 5.
    Pham, T.-T.T., Ho, J.C.: The effects of product-related, personal-related factors and attractiveness of alternatives on consumer adoption of NFC-based mobile payments. Technol. Soc. 43, 159–172 (2015). Scholar
  6. 6.
    Teo, A.-C., Tan, G.W.-H., Ooi, K.-B., Hew, T.-S., Yew, K.-T.: The effects of convenience and speed in m-payment. Ind. Manag. Data Syst. 115, 311–331 (2015). Scholar
  7. 7.
    Kim, C., Mirusmonov, M., Lee, I.: An empirical examination of factors influencing the intention to use mobile payment. Comput. Hum. Behav. 26, 310–322 (2010). Scholar
  8. 8.
    Shin, D.-H.: Modeling the interaction of users and mobile payment system: conceptual framework. Int. J. Hum. Comput. Interact. 26, 917–940 (2010). Scholar
  9. 9.
    Koenig-Lewis, N., Marquet, M., Palmer, A., Zhao, A.L.: Enjoyment and social influence: predicting mobile payment adoption. Serv. Ind. J. 35, 537–554 (2015). Scholar
  10. 10.
    Lu, Y., Yang, S., Chau, P.Y.K., Cao, Y.: Dynamics between the trust transfer process and intention to use mobile payment services: a cross-environment perspective. Inf. Manag. 48, 393–403 (2011). Scholar
  11. 11.
    Arvidsson, N.: Consumer attitudes on mobile payment services – results from a proof of concept test. Int. J. Bank Mark. 32, 150–170 (2014). Scholar
  12. 12.
    Hongxia, P., Xianhao, X., Weidan, L.: Drivers and barriers in the acceptance of mobile payment in China. In: 2011 International Conference on E-business and E-government (ICEE), pp. 1–4. IEEE (2011)Google Scholar
  13. 13.
    Mallat, N.: Exploring consumer adoption of mobile payments – a qualitative study. J. Strateg. Inf. Syst. 16, 413–432 (2007). Scholar
  14. 14.
    Slade, E.L., Williams, M.D., Dwivedi, Y.K.: Mobile payment adoption: classification and review of the extant literature. Mark. Rev. 13, 167–190 (2013). Scholar
  15. 15.
    Mallat, N., Rossi, M., Tuunainen, V.K., Öörni, A.: The impact of use context on mobile services acceptance: the case of mobile ticketing. Inf. Manag. 46, 190–195 (2009). Scholar
  16. 16.
    Alalwan, A.A., Rana, N.P., Dwivedi, Y.K., Lal, B., Williams, M.D.: Adoption of mobile banking in jordan: exploring demographic differences on customers’ perceptions. In: Janssen, M., Mäntymäki, M., Hidders, J., Klievink, B., Lamersdorf, W., van Loenen, B., Zuiderwijk, A. (eds.) I3E 2015. LNCS, vol. 9373, pp. 13–23. Springer, Cham (2015). Scholar
  17. 17.
    Stamper, R.K.: Information systems as a social science. In: Falkenberg, E.D., Lyytinen, K., Verrijn-Stuart, A.A. (eds.) Information System Concepts: An Integrated Discipline Emerging. ITIFIP, vol. 36, pp. 1–51. Springer, Boston (2000). Scholar
  18. 18.
    Fishbein, M., Ajzen, I.: Belief, Attitude, Intention, and Behavior: An Introduction to Theory and Research. Addison-Wesley Publishing Co., Reading (1975)Google Scholar
  19. 19.
    Davis, F.D.: Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. 13, 319 (1989). Scholar
  20. 20.
    Venkatesh, V., Davis, F.D.: A theoretical extension of the technology acceptance model: four longitudinal field studies. Manag. Sci. 46, 186–204 (2000). Scholar
  21. 21.
    Chhonker, M.S., Verma, D., Kar, A.K.: Review of technology adoption frameworks in mobile commerce. Procedia Comput. Sci. 122, 888–895 (2017). Scholar
  22. 22.
    Zimmer, J.C., Arsal, R.E., Al-Marzouq, M., Grover, V.: Investigating online information disclosure: effects of information relevance, trust and risk. Inf. Manag. 47, 115–123 (2010). Scholar
  23. 23.
    Bauer, R.: Consumer behavior as risk taking. In: Risk Taking and Information Handling in Consumer Behavior. Harvard University Press, Cambridge (1967)Google Scholar
  24. 24.
    Featherman, M.S., Pavlou, P.A.: Predicting e-services adoption: a perceived risk facets perspective. Int. J. Hum. Comput. Stud. 59, 451–474 (2003). Scholar
  25. 25.
    Bauer, H.H., Reichardt, T., Barnes, S.J., Neumann, M.M.: Driving consumer acceptance of mobile marketing: a theoretical framework and empirical study. J. Electron. Commer. Res. 6, 181 (2005)Google Scholar
  26. 26.
    Cheng, T.C.E., Lam, D.Y.C., Yeung, A.C.L.: Adoption of internet banking: an empirical study in Hong Kong. Decis. Support Syst. 42, 1558–1572 (2006). Scholar
  27. 27.
    Zheng, L., Favier, M., Huang, P., Coat, F.: Chinese consumer perceived risk and risk relievers in e-shopping for clothing. J. Electron. Commer. Res. 13, 255 (2012)Google Scholar
  28. 28.
    Dai, B., Forsythe, S., Kwon, W.-S.: The impact of online shopping experience on risk perceptions and online purchase intentions: does product category matter? J. Electron. Commer. Res. 15, 13 (2014)Google Scholar
  29. 29.
    Bagozzi, R.P.: The legacy of the technology acceptance model and a proposal for a paradigm shift. J. Assoc. Inf. Syst. 8, 3 (2007)Google Scholar
  30. 30.
    Benbasat, I., Barki, H.: Quo vadis TAM? J. Assoc. Inf. Syst. 8, 7 (2007)Google Scholar
  31. 31.
    Yousafzai, S.Y., Foxall, G.R., Pallister, J.G.: Technology acceptance: a meta-analysis of the TAM: part 1. J. Model. Manag. 2, 251–280 (2007). Scholar
  32. 32.
    Venkatesh, V., Davis, F.D., Morris, M.G.: Dead or alive? The development, trajectory and future of technology adoption research. J. Assoc. Inf. Syst. 8, 267–286 (2007)Google Scholar
  33. 33.
    Straub, D., Keil, M., Brenner, W.: Testing the technology acceptance model across cultures: a three country study. Inf. Manag. 33, 1–11 (1997). Scholar
  34. 34.
    Liu, K.: Semiotics in Information System Engineering. Cambridge University Press, Cambridge (2000)CrossRefGoogle Scholar
  35. 35.
    Peirce, C.S.: Collected Papers of Charles Sanders Peirce: Pragmaticisms and Pragnoaticism, Scientific Metaphysics. Belknap Press, Cambridge (1935)Google Scholar
  36. 36.
    Stamper, R.K.: Towards a theory of information: information: mystical fluid or a subject for scientific enquiry? Comput. J. 28, 195–199 (1985). Scholar
  37. 37.
    Al-Rajhi, M., Liu, K., Nakata, K.: A conceptual model for acceptance of information systems: an organizational semiotic perspective. In: Americas Conference on Information Systems (AMCIS), p. 348 (2010)Google Scholar
  38. 38.
    Stamper, R.K.: Organisational semiotics: informatics without the computer? In: Kecheng, L., Anderson, P.B., Stamper, R.K., Clarke, R.J. (eds.) Information, Organisation and Technology: Studies in Organisational Semiotics. Kluwer, Dordecht (2001)Google Scholar
  39. 39.
    Shoemaker, R.W., Shoaf, F.R.: Behavioral Changes in the Trial of New Products.
  40. 40.
    Lwin, M., Wirtz, J., Williams, J.D.: Consumer online privacy concerns and responses: a power–responsibility equilibrium perspective. J. Acad. Mark. Sci. 35, 572–585 (2007). Scholar
  41. 41.
    Suh, B., Han, I.: The impact of customer trust and perception of security control on the acceptance of electronic commerce. Int. J. Electron. Commer. 7, 135–161 (2003)Google Scholar
  42. 42.
    Chellappa, R.K., Pavlou, P.A.: Perceived information security, financial liability and consumer trust in electronic commerce transactions. Logist. Inf. Manag. 15, 358–368 (2002). Scholar

Copyright information

© IFIP International Federation for Information Processing 2018

Authors and Affiliations

  • Yu-Chun Pan
    • 1
    Email author
  • Aimee Jacobs
    • 2
  • Chekfoung Tan
    • 1
  • Sanaa Askool
    • 3
  1. 1.School of Computing and EngineeringUniversity of West LondonLondonUK
  2. 2.Craig School of BusinessCalifornia State University, FresnoFresnoUSA
  3. 3.Hekma School of BusinessDar Al-Hekma UniversityJeddahSaudi Arabia

Personalised recommendations