Skip to main content

Essential Oils from Aromatic and Medicinal Plants as Effective Weapons Against Mosquito Vectors of Public Health Importance

  • Chapter
  • First Online:
Mosquito-borne Diseases

Part of the book series: Parasitology Research Monographs ((Parasitology Res. Monogr.,volume 10))

Abstract

The fight against mosquito-borne diseases has recently seen the failure of control programmes based on synthetic chemical treatments to combat larvae and adults of mosquito vectors. This has led to several problems linked to residual substances causing a detrimental impact on environment and human health and to the development of resistance in mosquitoes. In this scenario, new eco-friendly and alternative strategies for the management of mosquito-borne diseases come from the use of plant essential oils (EOs). These are complex mixtures of small, volatile and lipophilic compounds, mostly belonging to monoterpenoids, sesquiterpenoids and phenylpropanoids, produced by aromatic plants belonging to several botanical families such as Apiaceae, Asteraceae, Geraniaceae, Lamiaceae, Lauraceae, Myrtaceae, Poaceae, Rutaceae, Verbenaceae and Zingiberaceae. An important ecological role played by EOs is defending plants from several enemies such as bacterial and fungal pathogens, viruses, insects and parasites. EOs represent ideal candidate ingredients to be incorporated in insecticidal formulations since scientific evidences have documented their efficacy against larvae and adults of several mosquitoes (e.g. Anopheles, Aedes and Culex) even at low doses (<50 ppm), the multiple mode of action and wide spectrum of efficacy, the low toxicity on nontarget organisms and environment and the unlikely capacity to induce insect resistance. In this chapter, we gave an overview of the most important EOs obtained from commercially important botanical families with documented efficacy against mosquito vectors. Particular attention has been paid to highlight their strengths and weakness and the future challenges leading to the replacement of conventional insecticides by agrochemical companies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbaszadeh B, Valadabadi SA, Farahani HA, Darvishi HH (2009) Studying of essential oil variations in leaves of Mentha species. Afr J Plant Sci 3:217–221

    Google Scholar 

  • Afshar FH, Maggi F, Ferrari S, Peron G, Dall’Acqua S (2015) Secondary metabolites of Alchemilla persica growing in iran (East Azarbaijan). Nat Prod Comm 10(10):1705–1708

    Google Scholar 

  • Afshar FH, Maggi F, Iannarelli R, Cianfaglione K, Isman MB (2017) Comparative toxicity of Helosciadium nodiflorum essential oils and combinations of their main constituents against the cabbage looper, Trichoplusia ni (Lepidoptera). Ind Crops Prod 98:46–52

    Article  CAS  Google Scholar 

  • Aggarwal KK, Tripathi AK, Ahmad A, Prajapati V, Verma N, Kumar S (2001) Toxicity of l-menthol and its derivative against four storage insects. Insect Sci Appl 21:229–235

    CAS  Google Scholar 

  • Ali A, Murphy CC, Demirci B, Wedge DE, Sampson BJ, Khan IA, Baser KHC, Tabanca N (2013) Insecticidal and biting deterrent activity of rose-scented geranium (Pelargonium spp.) essential oils and individual compounds against Stephanitis pyrioides and Aedes aegypti. Pest Manag Sci 69:1385–1392

    Article  CAS  PubMed  Google Scholar 

  • Ali A, Tabanca N, amin E, Demirci B, Khan IA (2016) Chemical composition and biting deterrent activity of essential oil of Tagetes patula (Marigold) against Aedes aegypti. Nat Prod Comm 11:1535–1538

    Google Scholar 

  • Allabi M (2004) Dictionary of plant sciences, 2nd edn. Oxford University Press Inc, New York ISBN 0-19-860876-4

    Google Scholar 

  • Alves-Pereira IMS, Fernandes-Ferreira M (1998) Essential oils and hydrocarbons from leaves and calli of Origanum vulgare ssp. virens. Phytochemistry 48:795–799

    Article  CAS  Google Scholar 

  • Amat N, Upur H, Blazekovic B (2010) In vivo hepatoprotective activity of the aqueous extract of Artemisia absinthium L. against chemically and immunologically induced liver injuries in mice. J Ethnopharmacol 131:478–484

    Article  PubMed  Google Scholar 

  • Amer A, Mehlhorn H (2006) Larvicidal effects of various essential oils against Aedes, Anopheles, and Culex larvae (Diptera, Culicidae). Parasitol Res 99:466–472

    Article  PubMed  Google Scholar 

  • Andallu B, Rajeshwari CU (2011) Aniseeds (Pimpinella anisum L.) in health and disease. In: Preedy VR, Watson RR, Patel VB (eds) Nutsand seeds in health and disease prevention, vol. 175, Chapter 20. Elsevier, Amsterdam, p 182

    Google Scholar 

  • Anderson IB, Mullen WH, Meeker JE, Khojasteh-Bakht SC, Oishi S, Nelson SD, Blanc PD (1996) Pennyroyal toxicity: measurement of toxic metabolite levels in two cases and review of the literature. Ann Intern Med 124:726–734

    Article  CAS  PubMed  Google Scholar 

  • Ansari MA, Vasudevan P, Tandon M, Razdan RK (2000) Larvicidal and mosquito repellent action of peppermint (Mentha piperita) oil. Bioresour Technol 71:267–271

    Article  CAS  Google Scholar 

  • Araujo d O (2016) Larvicidal activity of Syzygium aromaticum (L.) Merr and Citrus sinensis (L.) Osbeck essential oils and their antagonistic effects with temephos in resistant populations of Aedes aegypti. Mem Inst Oswaldo Cruz 111:443–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Attar N (2016) ZIKA virus circulates in new regions. Nat Rev Microbiol 14:62

    Article  CAS  Google Scholar 

  • Autran ES, Neves IA, Silva CSB, Santos GKN, Câmara CAG, Navarro DMAF (2009) Chemical composition, oviposition deterrent and larvicidalactivities against Aedes aegypti of essential oils from Piper marginatum Jacq. (Piperaceae). Bioresour Technol 100:2284–2288

    Article  CAS  PubMed  Google Scholar 

  • Bailen M, Julio LF, Diaz CE, Sanz J, Martinez-Diaz RA, Cabrera R, Burillo J, Gonzalez-Coloma A (2013) Chemical composition and biological effects of essential oils from Artemisia absinthium L. cultivated under different environmental conditions. Ind Crops Prod 49:102–107

    Article  CAS  Google Scholar 

  • Bairwa R, Sodha RS, Rajawat BS (2012) Trachyspermum ammi. Pharmacogn Rev 6:56–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bakkali F, Averbeck S, Averbeck D, Idaomar M (2008) Biological effects of essential oils – A review. Food Chem Toxicol 46:446–475

    Article  CAS  PubMed  Google Scholar 

  • Baser KHC, Buchbauer G (2015) Handbook of essential oils: science, technology, and applications. CRC, Boca Raton, FL, p 40

    Book  Google Scholar 

  • Bassolé IHN, Guelbeogo WM, Nébié R, Costantini C, Sagnon N’F, Kabore ZI, Traoré SA (2003) Ovicidal and larvicidal activity against Aedes aegypti and Anopheles gambiae complex mosquitoes of essential oils extracted from three spontaneous plants of Burkina Faso. Parassitologia 45:23–26

    PubMed  Google Scholar 

  • Batish DR, Singh HP, Kohli RK, Kaur S (2008) Eucalyptus essential oil as a natural pesticide. Forest Ecol Manag 256:2166–2174

    Article  Google Scholar 

  • Benelli G (2015a) Research in mosquito control: current challenges for a brighter future. Parasitol Res 114:2801–2805

    Article  PubMed  Google Scholar 

  • Benelli G (2015b) Plant-borne ovicides in the fight against mosquito vectors of medical and veterinary importance: a systematic review. Parasitol Res 114:3201–3212

    Article  PubMed  Google Scholar 

  • Benelli G, Mehlhorn H (2016) Declining malaria, rising dengue and Zika virus: insights for mosquito vector control. Parasitol Res 115:1747–1754

    Article  PubMed  Google Scholar 

  • Benelli G, Flamini G, Fiore G, Cioni PL, Conti B (2013) Larvicidal and repellent activity of the essential oil of Coriandrum sativum L. (Apiaceae) fruits against the filariasis vector Aedes albopictus Skuse (Diptera: Culicidae). Parasitol Res 112:1155–1161

    Article  PubMed  Google Scholar 

  • Benelli G, Lo Iacono A, Canale A, Mehlhorn H (2016) Mosquito vectors and the spread of cancer: an overlooked connection? Parasitol Res 115:2131–2137

    Article  PubMed  Google Scholar 

  • Benelli G, Pavela R, Iannarelli R, Petrelli R, Cappellacci L, Cianfaglione K, Afshar FH, Nicoletti M, Canale A, Maggi F (2017a) Synergized mixtures of Apiaceae essential oils and related plant-borne compounds: larvicidal effectiveness on the filariasis vector Culex quinquefasciatus Say. Ind Crops Prod 96:186–195

    Article  CAS  Google Scholar 

  • Benelli G, Pavela R, Canale A, Cianfaglione K, Ciaschetti G, Conti F, Nicoletti M, Senthil-Nathan S, Mehlhorn H, Maggi F (2017b) Acute larvicidal toxicity of five essential oils (Pinus nigra, Hyssopus officinalis, Satureja montana, Aloysia citrodora and Pelargonium graveolens) against the filariasis vector Culex quinquefasciatus: Synergistic and antagonistic effects. Parasitol Int 66:166–171

    Article  CAS  PubMed  Google Scholar 

  • Blackwell A, Stuart AE, Estambale BA (2003) The repellant and antifeedant activity of oil of Myrica gale against Aedes aegypti mosquitoes and its enhancement by the addition of salicyluric acid. Proc Royal Coll Phys Edinburgh 33:209–214

    Google Scholar 

  • Blagojevic P, Radulovic N, Palic R, Stojanovic G (2006) Chemical composition of the essential oils of Serbian wild-growing Artemisia absinthium and Artemisia vulgaris. J Agric Food Chem 54:4780–4789

    Article  CAS  PubMed  Google Scholar 

  • Bloomquist JR (2003) Chloride channels as tools for developing selective insecticides. Arch Insect Biochem Physiol 54:145–156

    Article  CAS  PubMed  Google Scholar 

  • Bloomquist JR, Boina DR, Chow E, Carlier PR, Reina M, Gonzalez-Coloma A (2008) Mode of action of the plant-derived silphinenes on insect andmammalian GABAA receptor/chloride channel complex. Pestic BioChem Phys 91:17–23

    Article  CAS  Google Scholar 

  • Bossou AD, Mangelinckx S, Yedomonhan H, Boko PM, Akogbeto MC, De Kimpe N, Avlessi F, Sohounhloue CK (2013) Chemical composition and insecticidal activity of plant essential oils from Benin against Anopheles gambiae (Giles). Parasites Vectors 6:337

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boulogne I, Petit P, Ozier-Lafontaine H, Desfontaines L, Loranger-Merciris G (2012) Insecticidal and antifungal chemicals produced by plants: a review. Environ Chem Lett 10:325–347

    Article  CAS  Google Scholar 

  • Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods-a review. Int J Food Microbiol 94:223–253

    Article  CAS  PubMed  Google Scholar 

  • Cai L, Wu CD (1996) Compounds from Syzygium aromaticum possessing growth inhibitory activity against oral pathogens. J Nat Prod 59:987–990

    Article  CAS  PubMed  Google Scholar 

  • Carey A, Wang G, Su C-Y, Zwiebel LJ, Carlson JR (2010) Odourant reception in the malaria mosquito Anopheles gambiae. Nature 464:66–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carmen G, Hancu G (2014) Antimicrobial and antifungal activity of Pelargonium roseum essential oils. Adv Pharm Bull 4:511

    PubMed  PubMed Central  Google Scholar 

  • Carriere F, Changvardieff P, Gil G, Pean M, Sigoillot JC, Tapie P (1990) Paraffinic hydrocarbons in heterotrophic, photomixotrophic and photoautotrophic cell suspensions of Euphorbia characias L. Plant Sci 71:93–98

    Article  CAS  Google Scholar 

  • CBI (2009a) Natural ingredients for cosmetics: the EU market for essential oils for cosmetics. CBI

    Google Scholar 

  • CBI (2009b) The natural colours, flavours and thickeners market in the EU. CBI

    Google Scholar 

  • Céspedes CL, Avila JG, Martínez A, Serrato B, Calderón-Mugica JC, Salgado-Garciglia R (2006) Antifungal and antibacterial activities of Mexican tarragon (Tagetes lucida). J Agric Food Chem 54:3521–3527

    Article  PubMed  CAS  Google Scholar 

  • Cespi M, Quassinti L, Perinelli DR, Bramucci M, Iannarelli R, Papa F, Ricciutelli M, Bonacucina G, Palmieri GF, Maggi F (2017) Microemulsions enhance the shelf-life and processability of Smyrnium olusatrum L. essential oilFlavour. Fragr J 32:159–164

    Article  CAS  Google Scholar 

  • Cetin H, Yanikoglu A (2006) A study of the larvicidal activity of Origanum (Labiatae) species from southwest Turkey. J Vector Ecol 31:118–122

    Article  PubMed  Google Scholar 

  • Cetin H, Kurt Y, Isik K, Yanikoglu A (2009) Larvicidal effect of Cedrus libani seed oils on mosquito Culex pipiens. Pharm Biol 47:665–668

    Article  CAS  Google Scholar 

  • Chadee DD, Williams SA, Ottesen EA (2002) Xenomonitoring of Culex quinquefasciatus mosquitoes as a guide for detecting the presence or absence of lymphatic filariasis: a preliminary protocol for mosquito sampling. Ann Trop Med Parasitol 96:47–53

    Article  Google Scholar 

  • Chang ST, Chen PF, Chang SC (2001) Antibacterial activity of leaf essential oils and their constituents from Cinnamomum osmophloeum. J Ethnopharmacol 77:123–127

    Article  CAS  PubMed  Google Scholar 

  • Chao LK, Hua KF, Hsu HY, Cheng SS, Liu JY, Chang ST (2005) Study on the anti- inflammatory activity of essential oil from leaves of Cinnamomum osmophloeum. J Agric Food Chem 53:7274–7278

    Article  CAS  PubMed  Google Scholar 

  • Cheng SS, Liu JY, Tsai KH, Chen WJ, Chang ST (2004) Chemical composition and mosquito larvicidal activity of essential oils from leaves of different Cinnamomum osmophloeum provenances. J Agric Food Chem 52:4395–4400

    Article  CAS  PubMed  Google Scholar 

  • Cheng SS, Huang CG, Chen YJ, Yu JJ, Chen WJ, Chang ST (2009a) Chemical compositions and larvicidal activities of leaf essential oils from two Eucalyptus species. Bioresour Technol 100:452–456

    Article  CAS  PubMed  Google Scholar 

  • Cheng SS, Liu JY, Huang CG, Hsui YR, Chen WJ, Chang ST (2009b) Insecticidal activities of leaf essential oils from Cinnamomum osmophloeum against three mosquito species. Bioresour Technol 100:457–464

    Article  CAS  PubMed  Google Scholar 

  • Choi WS, Park BS, Lee YH, Jang DY, Yoon HY, Lee SE (2006) Fumigant toxicities of essential oils and monoterpenes against Lycoriella mali adults. Crop Prot 25:398–401

    Article  CAS  Google Scholar 

  • Chung SK, Seo JY, Lim JH, Park HH, Yea MJ, Park HJ (2013) Microencapsulation of essential oil for insect repellent in food packaging system. J Food Sci 78:709–714

    Article  CAS  Google Scholar 

  • Cianfaglione K, Blomme EE, Quassinti L, Bramucci M, Lupidi G, Dall’Acqua S, Maggi F (2017) Cytotoxic Essential Oils from Eryngium campestre and Eryngium amethystinum (Apiaceae) Growing in Central Italy. Chem Biodivers 14:e1700096

    Article  CAS  Google Scholar 

  • Costa JGM, Rodrigues FFG, Angélico EC, Silva I, Mota ML, Santos NKA, Cardoso ALH, Lemos TLG (2005) Chemical-biological study of the essential oils of Hyptis martiusii, Lippia sidoides and Syzigium aromaticum against larvae of Aedes aegypti and Culex quinquefasciatus. Braz J Pharmacogenom 15:304–309

    CAS  Google Scholar 

  • Costa AA, Naspi CV, Lucia A, Masuh HM (2017) Repellent and larvicidal activity of the essential oil from Eucalyptus nitens against Aedes aegypti and Aedes albopictus (Diptera: Culicidae). J Med Entomol 54:1–7

    Article  Google Scholar 

  • de Paula JP, Gomes-Carneiro MR, Paumgartten FJR (2003) Chemical composition, toxicity and mosquito repellency of Ocimum selloi oil. J Ethnopharmacol 88:253–260

    Article  CAS  Google Scholar 

  • Dev S, Koul O (1997) Insecticides of natural origin. Harwood Academic, Amsterdam

    Google Scholar 

  • Dewick PM (2002) Medicinal natural products: a biosynthetic approach, 2nd edn. Wiley, Chichester

    Google Scholar 

  • Dharmagadda VSS, Naik SN, Mittal PK, Vasudevan P (2005) Larvicidal activity of Tagetes patula essential oil against three mosquito species. Bioresour Technol 96:1235–1240

    Article  CAS  PubMed  Google Scholar 

  • Dias CN, Moraes DFC (2014) Essential oils and their compounds as Aedes aegypti L. (Diptera: Culicidae) larvicides. Parasitol Res 113(2):565–592

    Article  PubMed  Google Scholar 

  • Dobetsberger C, Buchbauer G (2010) Actions of essential oils on the central nervous system: an updated review. Flavour Fragr J 26:300–316

    Article  CAS  Google Scholar 

  • Dong Z, Ma Y, Hayat K, Jia C, Xia S, Zhang X (2011) Morphology and release profile of microcapsules encapsulating peppermint oil by complex coacervation. J Food Eng 104:455–460

    Article  CAS  Google Scholar 

  • dos Santos DC, Schneider LR, da Silva BA, Campos AD, Lund RG (2017) Systematic review and technological overview of the antimicrobial activity of Tagetes minuta and future perspectives. J Ethnopharmacol 208:8–15

    Article  Google Scholar 

  • El-Akhal F, El Ouali Lalami A, Guemmouth R (2015) Larvicidal activity of essential oils of Citrus sinensis and Citrus aurantium (Rutaceae) cultivated in Morocco against the malaria vector Anopheles labranchiae (Diptera: Culicidae). Asian Pac J Trop Dis 5:458–462

    Article  CAS  Google Scholar 

  • Enan E (2001) Insecticidal activity of essential oils: octopaminergic sites of action. Comp Biochem Physiol C: Toxicol Pharmacol 130:325–337

    CAS  Google Scholar 

  • Enan EE (2005) Molecular and pharmacological analysis of an octopamine receptor from American cockroach and fruit fly in response to plant essential oils. Arch Insect Biochem Physiol 59:161–171

    Article  CAS  PubMed  Google Scholar 

  • EU Pesticides Database (2015) [Online]. Available: http://ec.europa.eu/sanco_pesticides/public/?event=homepage&language=EN. Accessed 25 Apr 2015

  • European Pharmacopoeia (2005) European Pharmacopoeia Council of Europe, 5th edn. European Pharmacopoeia, Strasburg

    Google Scholar 

  • Fang Z, Bhandari B (2010) Encapsulation of polyphenols—a review. Trends Food Sci Technol 21:510–523

    Article  CAS  Google Scholar 

  • Felipe CFB, Fonsêca KS, Barbosa ALR, Bezerra JNS, Neto MA, Fonteles MMF, Viana GSB (2008) Alterations in behavior and memory induced by the essential oil of Zingiber officinale Roscoe (ginger) in mice are cholinergic-dependent. J Med Plant Res 2:163–170

    Google Scholar 

  • Filomeno CA, Barbosa LCA, Teixeira RR, Pinheiro AL, de Sá Farias E, de Paula Silva EM, Picanço MC (2017) Corymbia spp. and Eucalyptus spp. essential oils have insecticidal activity against Plutella xylostella. Ind Crops Prod 109:374–383

    Article  CAS  Google Scholar 

  • Food and Agriculture Organization of the United Nations (1999) The use of spices and medicinals as bioactive protectants for grains. FAO (Agricultural Services Bulletin No. 137), Rome, pp 201–213

    Google Scholar 

  • Fournier D, Mutero A (1994) Modification of acetylcholinesterase as a mechanism of resistance to insecticides. Comp Biochem Physiol C Toxicol Pharmacol 108:19–31

    Google Scholar 

  • Galvão JG, Silva VF, Ferreira SG, França FRM, Santos DA, Freitas LS, Alves PB, Araújo AAS, Cavalcanti SCH, Nunes RS (2015) β-cyclodextrin inclusion complexes containing Citrus sinensis (L.) Osbeck essential oil: An alternative to control Aedes aegypti larvae. Thermochim Acta 608:14–19

    Article  CAS  Google Scholar 

  • Gardner RO (1977) Systematic distribution and ecological function of the secondary metabolites of the rosidae-asteridae. Biochem Syst Ecol 5:29–35

    Article  CAS  Google Scholar 

  • Giatropoulos A, Papachristos DP, Kimbaris A, Koliopoulos G, Polissiou MG, Emmanouel N, Michaelakis A (2012) Evaluation of bioefficacy of three Citrus essential oils against the dengue vector Aedes albopictus (Diptera: Culicidae) in correlation to their components enantiomeric distribution. Parasitol Res. 111:2253–2263

    Article  PubMed  Google Scholar 

  • Giatropoulos A, Pitarokili D, Papaioannou F, Papachristos DP, Koliopoulos G, Emmanouel N, Tzakou O, Michaelakis A (2013) Essential oil composition, adult repellency and larvicidal activity of eight Cupressaceae species from Greece against Aedes albopictus (Diptera: Culicidae). Parasitol Res 112:1113–1123

    Article  PubMed  Google Scholar 

  • Govindarajan M (2010) Chemical composition and larvicidal activity of leaf essential oil from Clausena anisata (willd.) hook. F. Benth (Rutaceae) against three mosquito species. Asian Pac J Trop Med 3:874–877

    Article  CAS  Google Scholar 

  • Govindarajan M, Benelli G (2016a) alpha-Humulene and beta-elemene from Syzygium zeylanicum (Myrtaceae) essential oil: highly effective and eco-friendly larvicides against Anopheles subpictus, Aedes albopictus and Culex tritaeniorhynchus (Diptera: Culicidae). Parasitol Res 115:2771–2778

    Article  PubMed  Google Scholar 

  • Govindarajan M, Benelli G (2016b) Artemisia absinthium-borne compounds as novel larvicides: effectiveness against six mosquito vectors and acute toxicity on non-target aquatic organisms. Parasitol Res 115:4649–4661

    Article  PubMed  Google Scholar 

  • Govindarajan M, Sivakumar R, Rajeswary M, Yogalakshmi K (2012) Chemical composition and larvicidal activity of essential oil from Mentha spicata (Linn.) against three mosquito species. Parasitol Res 110:2023–2032

    Article  CAS  PubMed  Google Scholar 

  • Govindarajan M, Sivakumar R, Rajeswary M, Yogalakshmi K (2013) Chemical composition and larvicidal activity of essential oil from Ocimum basilicum (L.) against Culex tritaeniorhynchus, Aedes albopictus and Anopheles subpictus (Diptera: Culicidae). Exp Parasitol 134:7–11

    Article  CAS  PubMed  Google Scholar 

  • Govindarajan M, Rajeswary M, Hoti SL, Benelli G (2016a) Larvicidal potential of carvacrol and terpinen-4-ol from the essential oil of Origanum vulgare (Lamiaceae) against Anopheles stephensi, Anopheles subpictus, Culex quinquefasciatus and Culex tritaeniorhynchus (Diptera: Culicidae). Res Vet Sci 104:77–82

    Article  CAS  PubMed  Google Scholar 

  • Govindarajan M, Kadaikunnan S, Alharbi NS, Benelli G (2016b) Acute toxicity and repellent activity of the Origanum scabrum Boiss. & Heldr. (Lamiaceae) essential oil against four mosquito vectors of public health importance and its biosafety on non-target aquatic organisms. Parasitol Res 23:23228–23238

    CAS  Google Scholar 

  • Govindarajan M, Rajeswary M, Bhattacharyya A, Benelli G (2016c) Eugenol, α-pinene and β-caryophyllene from Plectranthus barbatus essential oil as eco-friendly larvicides against malaria, dengue and Japanese encephalitis mosquito vectors. Parasitol Res 115:807–815

    Article  PubMed  Google Scholar 

  • Greive KA, Staton JA, Miller PF, Peters BA, Oppenheim VMJ (2010) Development of Melaleuca oils as effective natural-based personal insect repellents. Aust J Entomol 49:40–48

    Article  Google Scholar 

  • Hassine DB, Abderrabba M, Yvon Y, Lebrihi A, Mathieu F, Couderc F, Bouajila J (2012) Chemical composition and in vitro evaluation of the antioxidant and anti- microbial activities of Eucalyptus gillii essential oil and extracts. Molecules 17:9540–9558

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hold KM, Sirisoma NS, Ikeda T, Narahashi T, Casida JE (2000) α-Thujone (the active component of absinthe): γ-aminobutyric acid type A receptor modulation and metabolic detoxification. Proc Natl Acad Sci 97:3826–3831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holmes CA (2005) IENICA summary report for the European Union 2000-2005. Interactive European Network for Industrial Crops and their Applications

    Google Scholar 

  • Holopainen JK, Gershenzon J (2010) Multiple stress factors and the emission of plant VOCs. Trends Plant Sci 15:176–184

    Article  CAS  PubMed  Google Scholar 

  • Hummelbrunner LA, Isman MB (2001) Acute, sublethal, antifeedant, and synergistic effects of monoterpenoid essential oil compounds on the tobacco cutworm, Spodoptera litura (Lep., Noctuidae). J Agric Food Chem 49:715–720

    Article  CAS  PubMed  Google Scholar 

  • Iannarelli R, Caprioli G, Sut S, Dall’Acqua S, Fiorini D, Vittori S, Maggi F (2017) Valorizing overlooked local crops in the era of globalization: the case of aniseed (Pimpinella anisum L.) from Castignano (central Italy). Ind Crops Prod 104:99–110

    Article  Google Scholar 

  • Isman MB (2015) A renaissance for botanical insecticides. Pest Manag Sci 71:1587–1590

    Article  CAS  PubMed  Google Scholar 

  • Isman MB (2017) Bridging the gap: moving botanical insecticides from the laboratory to the farm. Ind Crops Prod. https://doi.org/10.1016/j.indcrop.2017.07.012

    Article  Google Scholar 

  • Isman MB, Grieneisen ML (2014) Botanical insecticide research: many publications, limited useful data. Trens Plant Sci 19:140–145

    Article  CAS  Google Scholar 

  • Isman MB, Machial CM (2006) Chapter 2. Pesticides based on plant essential oils: from traditional practice to commercialization. In: Rai M, Carpinella MC (eds) Naturally occurring bioactive compounds. Elsevier, BV, Amsterdam, pp 29–44

    Chapter  Google Scholar 

  • Isman MB, Miresmailli S, Machial C (2011) Commercial opportunities for pesticides based on plant essential oils in agriculture, industry and consumer products. Phytochem Rev 10:197–204

    Article  CAS  Google Scholar 

  • Jacobson M (1989) Botanical pesticides: past, present and future. Insecticides of plant in origin. Arnason, Philogene, Bjr and Morand P. ACS Symp Ser 387:1–10

    Article  CAS  Google Scholar 

  • Jelinek T, Dobler G, Hölscher M, Löscher T, Nothdurft H-D (1997) Prevalence of infection with dengue virus among international travelers. Arch Intern Med 157:2367–2370

    Article  CAS  PubMed  Google Scholar 

  • Karban R, Myers JH (1989) Induced plant responses to herbivory. Ann Rev Ecol Syst 20:331–348

    Article  Google Scholar 

  • Keane S, Ryan MF (1999) Purification, characterisation and inhibition of monoterpenes of acetylcholinesterase from the waxmoth, Galleria melonella. Insect Biochem Mol Biol 29:1097–1110

    Article  CAS  Google Scholar 

  • Khan MSA, Ahmad I (2012) Biofilm inhibition by Cymbopogon citratus and Syzygium aromaticum essential oils in the strains of Candida albicans. J Ethnopharmacol 140:416–423

    Article  CAS  PubMed  Google Scholar 

  • Kimbaris AC, Koliopoulos G, Michaelakis A, Konstantopoulou MA (2012) Bioactivity of Dianthus caryophyllus, Lepidium sativum, Pimpinella anisum, and Illicium verum essential oils and their major components against the West Nile vector Culex pipiens. Parasitol Res 111:2403–2410

    Article  PubMed  Google Scholar 

  • Koliopoulos G, Pitarokili D, Kioulos E, Michaelakis A, Tzakou O (2010) Chemical composition and larvicidal evaluation of Mentha, Salvia, and Melissa essential oils against the West Nile virus mosquito Culex pipiens. Parasitol Res 107:327–335

    Article  PubMed  Google Scholar 

  • Kosar M, Tunalier Z, Özek T, Kürkcüoglu M, Can Baser KH (2005) A simple method to obtain essential oils from Salvia triloba L. and Laurus nobilis L. by using microwave-assisted hydrodistillation. Z Naturforsch C 60:501–504

    Article  CAS  PubMed  Google Scholar 

  • Koul O (2005) Insect antifeedants. CRC, Bota Racon, FL

    Google Scholar 

  • Kumar P, Mishra S, Malik A, Satya S (2011) Insecticidal properties of Mentha species: a review. Ind Crops Prod 34:802–817

    Article  CAS  Google Scholar 

  • Kweka EJ, Mosha FW, Lowassa A, Mahande AM, Mahande MJ, Massenga CP, Tenu F, Lyatuu EE, Mboya MA, Temu EA (2008) Longitudinal evaluation of Ocimum and other plants effects on the feeding behavioral response of mosquitoes (Diptera: Culicidae) in the field in Tanzania. Parasit vectors 1:42

    Article  PubMed  PubMed Central  Google Scholar 

  • Kweka EJ, Cardoso Lima T, Marciale CM, de Sousa DP (2016) Larvicidal efficacy of monoterpenes against the larvae of Anopheles gambiae. Asian Pac J Trop Biomed 6:290–294

    Article  Google Scholar 

  • Kyarimpa CM, Böhmdorfer S, Wasswa J, Kiremire BT, Ndiege IO, Kabasa JD (2014) Essential oil and composition of Tagetes minuta from Uganda. Larvicidal activity on Anopheles gambiae. Ind Crops Prod 62:400–404

    Article  CAS  Google Scholar 

  • Laohasongkram K, Mahamaktudsanee T, Chaiwanichsiri S (2011) Microencapsulation of macadamia oil by spray drying. Proc Food Sci 1:1660–1665

    Article  CAS  Google Scholar 

  • Lemon K (2004) An assessment of treating depression and anxiety with aromatherapy. Int J Aromather 14:63–69

    Article  Google Scholar 

  • Leung AY, Foster S (1996) Encyclopedia of common natural ingredients used infood, drugs, and cosmetics, 2nd edn. Wiley, New York

    Google Scholar 

  • Leyva M, Tacoronte JE, Marquetti MC, Scull R, Tiomno O, Mesa A, Montada D (2009) Use of essential oils from endemic Pinaceae as an alternative for Aedes aegypti control. Rev Cubana Med Trop 61:239–243

    Google Scholar 

  • Leyva M, French-Pacheco L, Quintana F, Montada D, Castex M, Hernandez A (2016) Melaleuca quinquenervia (Cav.) S.T. Blake (Myrtales: Myrtaceae): Natural alternative for mosquito control. Asian Pac J Trop Med 9:979–984

    Article  PubMed  Google Scholar 

  • Li Y-q, D-x K, Wu H (2013) Analysis and evaluation of essential oil components of cinnamon barks using GC–MS and FTIR spectroscopy. Ind Crops Prod 41:269–278

    Article  CAS  Google Scholar 

  • Lima TC, da Silva TKM, Silva FL, Barbosa-Filho JM, Marques MOM, La Corte Santos R, de Holanda Cavalcanti SC, de Sousa DP (2014) Larvicidal activity of Mentha x villosa Hudson essential oil, rotundifolone and derivatives. Chemosphere 104:37–43

    Article  CAS  PubMed  Google Scholar 

  • Lis-Balchin M (2003) History of nomenclature, usage and cultivation of Geranium and Pelargonium species. Geranium and Pelargonium: history of nomenclature, usage and cultivation, pp 5–10

    Book  Google Scholar 

  • Lis-Balchin M, Hart SL, Deans SG, Eaglesham E (1996) Potential agrochemical and medicinal usage of essential oils of Pelargonium species. J Herbs Spices Med Plant 3:11–22

    Article  Google Scholar 

  • Lomonaco D, Santiago GMP, Ferreira YS, Arriaga AMC, Mazzetto SE, Meleç G, Vasapollo G (2009) Study of technical CNSL and its main components asnew green larvicides. Green Chem. https://doi.org/10.1039/b811504d

    Article  CAS  Google Scholar 

  • Lopez MD, Maudhuit A, Pascual-Villalobos MJ, Poncelet D (2012) Development of formulations to improve the controlled-release of Linalool to be applied as an insecticide. J Agric Food Chem 60:1187–1192

    Article  CAS  PubMed  Google Scholar 

  • Lubbe A, Verpoorte R (2011) Cultivation of medicinal and aromatic plants for specialty industrial materials. Ind Crops Prod 34:785–801

    Article  CAS  Google Scholar 

  • Lucia A, Audino PG, Seccacini E, Licastro S, Zerba E, Masuh H (2007) Larvicidal effect of Eucalyptus grandis essential oil and turpentine and their major components on Aedes aegypti larvae. J Am Mosq Control Assoc 23:299–303

    Article  CAS  PubMed  Google Scholar 

  • Maggi F, Tirillini B, Vittori S, Sagratini G, Papa F (2009) Analysis of the volatile components of Onosma echioides (L.) L. var. columnae Lacaita growing in central Italy. J Essent Oil Res 21:441–447

    Article  CAS  Google Scholar 

  • Maggi F, Papa F, Cristalli G, Sagratini G, Vittori S (2010a) Characterisation of the mushroom-like flavour of Melittis melissophyllum L. subsp. melissophyllum by headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography (GC–FID) and gas chromatography–mass spectrometry (GC–MS). Food Chem 123:983–992

    Article  CAS  Google Scholar 

  • Maggi F, Papa F, Cristalli G, Sagratini G, Vittori S, Giuliani C (2010b) Histochemical localization of secretion and composition of the essential oil in Melittis melissophyllum L. subsp. melissophyllum from Central Italy. Flavour Fragr J 25:63–70

    Article  CAS  Google Scholar 

  • Maggi F, Papa F, Vittori S (2012a) Gas chromatography for the characterization of the mushroom-like flavor in Melittis melissophyllum L. (Lamiaceae). J Essent Oil Res 24:321–337

    Article  CAS  Google Scholar 

  • Maggi F, Barboni L, Papa F, Caprioli G, Ricciutelli M, Sagratini G, Vittori S (2012b) A forgotten vegetable (Smyrnium olusatrum L., Apiaceae) as a rich sourceof isofuranodiene. Food Chem 135:2852–2862

    Article  CAS  PubMed  Google Scholar 

  • Maggi F, Papa F, Giuliani C, Maleci Bini L, Venditti A, Bianco A, Nicoletti M, Iannarelli R, Caprioli G, Sagratini G, Cortese M, Ricciutelli M, Vittori S (2015) Essential oil chemotypification and secretory structures of the neglected vegetable Smyrnium olusatrum L. (Apiaceae) growing in central Italy. Flavour Fragr J 30:139–159

    Article  CAS  Google Scholar 

  • McChesney JD (1994) After discovery: the issue of supply strategies in the development of natural products. In: Hedin PA (ed) Bioregulators for crop protection and pest control. American Chemical Society Symposium Series, Washington, DC, pp 144–151

    Chapter  Google Scholar 

  • Mdoe FP, Cheng S-S, Msangi S, Nkwengulila G, Chang S-T, Kweka EJ (2014) Activity of Cinnamomum osmophloeum leaf essential oil against Anopheles gambiae s.s. Parasit Vectors 7:209

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mehlhorn H (2015) Encyclopedia of parasitology, 4th edn. Springer, New York, p 893

    Google Scholar 

  • Michaelakis A, Theotokatos SA, Koliopoulos G, Chorianopoulos NG (2007) Essential oils of Satureja species: insecticidal effect on Culex pipiens larvae (Diptera: Culicidae). Molecules 12:2567–2578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michaelakis A, Papachristos D, Kimbaris A, Koliopoulos G, Giatropoulos A, Polissiou MG (2009) Citrus essential oils and four enantiomeric pinenes against Culex pipiens (Diptera: Culicidae). Parasitol Res 105:769–773

    Article  PubMed  Google Scholar 

  • Michaelakis A, Papachristos D, Kimbaris A, Polissiou MG (2011) Larvicidal evaluation of three Mentha species essential oils and their isolated major components against the West Nile virus mosquito. Hellenic Plant Protect Jl 4:35–43

    Google Scholar 

  • Mills C, Cleary BJ, Gilmer JF, Walsh JJ (2004) Inhibition of acetylcholinesterase by tea tree oil. J Pharm Pharmacol 56:547–560

    Article  CAS  Google Scholar 

  • Miresmailli S, Isman MB (2014) Botanical insecticides inspired by plant–herbivore chemical interactions. Trends Plant Sci 19:29–35

    Article  CAS  PubMed  Google Scholar 

  • Miresmailli S, Ojha HD, Drury JW (2013) Apparatus and method for controlled release of botanical fumigant pesticides. PCT/US13/36410 EFS ID: 15507936

    Google Scholar 

  • Mohammadreza VR (2010) Chemical composition and larvicidal activity of the essential oil of Iranian Laurus nobilis L. J Appl Horticul 12:155–157

    Google Scholar 

  • Monath TP (2007) Dengue and Yellow Fever—challenges for the development and use of vaccines. N Engl J Med 357:2222–2225

    Article  CAS  PubMed  Google Scholar 

  • Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu G, Pyke AT, Hedges LM, Rocha BC, Hall-Mendelin S, Day A, Riegler M, Hugo LE, Johnson KN, Kay BH, McGraw EA, van den Hurk AF, Ryan PA, O’Neill SL (2009) A Wolbachia symbiont in Aedes aegypti limits infection with dengue, chikungunya, and Plasmodium. Cell 139:1268–1278

    Article  PubMed  Google Scholar 

  • Morgan ED (2004) The place of neem among modern natural pesticides. In: Koul O, Wahab S (eds) Neem: today and in the new millennium. Kluwer, Boston, MA, pp 21–32

    Chapter  Google Scholar 

  • Mullin CA, Chyb S, Eichenseer H, Hollister B, Frazier JL (1994) Neuroreceptor mechanisms in insect gustation: a pharmacological approach. J Insect Physiol 40:913–931

    Article  CAS  Google Scholar 

  • Murcia MA, Egea I, Romojaro F, Parras P, Jimenez AM, Martinez-Tome M (2004) Antioxidant evaluation in dessert spices compared with common food additives. Influence of irradiation procedure. J Agric Food Chem 52:1872–1881

    Article  CAS  PubMed  Google Scholar 

  • Naqqash MN, Gökçe A, Bakhsh A, Salim M (2016) Insecticide resistance and its molecular basis in urban insect pests. Parasitol Res 115:1363–1373

    Article  PubMed  Google Scholar 

  • Negahban M, Msaada K, Tafazoli E, Zakerin A (2013) Effect of foliar application of diammonium phosphate on morphological characteristics and constituents of essential oil of Mexican marigold (Tagetes minuta L.). Med Aromat Plant Sci Biotechnol 7:11–18

    Google Scholar 

  • Nerio LS, Olivero-Verbel J, Stashenko E (2010) Repellent activity of essential oils: a review. Bioresour Technol 101:372–378

    Article  CAS  PubMed  Google Scholar 

  • Nicoletti M, Murugan K, Benelli GV (2016) Emerging Insect-borne Diseases of Agricultural, Medical and Veterinary Importance. In: Trdan S (ed) Insecticide resistance, vol 11. INTECH, Rijeka, Croatia, pp 216–242

    Google Scholar 

  • Ntonga PA, Baldovini N, Mouray E, Mambu L, Belong P, Grellier P (2014) Activity of Ocimum basilicum, Ocimum canum, and Cymbopogon citratus essential oils against Plasmodium falciparum and mature-stage larvae of Anopheles funestus s.s. Parasite 21:33

    Article  Google Scholar 

  • Pandey SK, Upadhyay S, Tripathi AK (2009) Insecticidal and repellent activitiesof thymol from the essential oil of Trachyspermum ammi (Linn) Sprague seeds against Anopheles stephensi. Parasitol Res 105:507–512

    Article  CAS  PubMed  Google Scholar 

  • Papachristos DP, Stamopoulos DC (2004) Fumigant toxicity of three essential oils on the eggs of Acanthoscelides obtectus (Say) (Coleoptera: Bruchidae). J Stored Prod Res 40:517–525

    Article  CAS  Google Scholar 

  • Park H-M, Park I-K (2012) Larvicidal activity of Amyris balsamifera, Daucus carota and Pogostemon cablin essential oils and their components against Culex pipiens pallens. J Asia Pac Entomol 15:631–634

    Article  CAS  Google Scholar 

  • Pavela R (2008) Insecticidal properties of several essential oils on the house fly (Musca domestica L.). Phytother Res 22:274–278

    Article  CAS  PubMed  Google Scholar 

  • Pavela R (2009) Larvicidal property of essential oils against Culex quinquefasciatus Say (Diptera: Culicidae). Ind Crops Prod 30:311–315

    Article  CAS  Google Scholar 

  • Pavela R (2014a) Insecticidal properties of Pimpinella anisum essential oils against the Culex quinquefasciatus and the non-target organism Daphnia magna. J Asia Pac Entomol 17:287–293

    Article  CAS  Google Scholar 

  • Pavela R (2014b) Acute, synergistic and antagonistic effects of some aromatic compounds on the Spodoptera littoralis Boisd. (Lep.: Noctuidae) larvae. Ind Crops Prod 60:247–258

    Article  CAS  Google Scholar 

  • Pavela R (2015) Essential oils for the development of eco-friendly mosquito larvicides: a review. Ind Crops Prod 76:174–187

    Article  CAS  Google Scholar 

  • Pavela R, Benelli G (2016) Essential oils as eco-friendly biopesticides? Challenges and constraints. Trends Plant Sci 21:1000–1007

    Article  CAS  PubMed  Google Scholar 

  • Pavela R, Vrchotova N, Triska J (2009) Mosquitocidal activities of thyme oils (Thymus vulgaris L.)against Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 105:1365–1370

    Article  PubMed  Google Scholar 

  • Pavela R, Kaffkova K, Kumsta M (2014) Chemical composition and larvicidal activity of essential oils from different Mentha L. and Pulegium species against Culex quinquefasciatus Say (Diptera: Culicidae). Plant Protect Sci 50:36–42

    Article  CAS  Google Scholar 

  • Pavela R, Maggi F, Mbuntcha H, Woguem V, Fogang HPD, Womeni HM, Tapondjou LA, Barboni L, Nicoletti M, Canale A, Benelle G (2016) Traditional herbal remedies and dietary spices from Cameroon as novel sources of larvicides against filariasis mosquitoes? Parasitol Res 115:4617–4626

    Article  PubMed  Google Scholar 

  • Pavela R, Maggi F, Lupidi G, Cianfaglione K, Dauvergne X, Bruno M, Benelli G (2017) Efficacy of sea fennel (Crithmum maritimum L., Apiaceae) essential oils against Culex quinquefasciatus Say and Spodoptera littoralis (Boisd.). Ind Crops Prod 109:603–610

    Article  CAS  Google Scholar 

  • Pavela R, Maggi F, Cianfaglione K, Bruno M, Benelli G (2018) Larvicidal activity of essential oils of five Apiaceae taxa and some of their main constituents against Culex quinquefasciatus. Chem Biodivers. https://doi.org/10.1002/cbdv.201700382

    Article  CAS  Google Scholar 

  • Phasomkusolsil S, Soonwera M (2011) Comparative mosquito repellency of essential oils against Aedes aegypti (Linn.), Anopheles dirus (Peyton and Harrison) and Culex quinquefasciatus (Say). Asian Pac J Trop Biomed:S113–S118

    Article  Google Scholar 

  • Phasomkusolsil S, Soonwera M (2012) The effects of herbal essential oils on the oviposition deterrent and ovicidal activities of Aedes aegypti (Linn.), Anopheles dirus (Peyton and Harrison) and Culex quinquefasciatus (Say). Trop Biomed 29:138–150

    Google Scholar 

  • Pirmohammadi M, Shayeghi M, Vatandoost H, Abaei MR, Mohammadi A, Bagheri A, Khoobdel M, Bakhshi H, Pirmohammadi M, Tavassoli M (2016) Chemical composition and repellent activity of Achillea vermiculata and Satureja hortensis against Anopheles stephensi. J Arthropod-Borne Dis 10:201–210

    PubMed  PubMed Central  Google Scholar 

  • Pitarokili D, Michaelakis A, Koliopoulos G, Giatropoulos A, Tzakou O (2011) Chemical composition, larvicidal evaluation, and adult repellency of endemic Greek Thymus essential oils against the mosquito vector of West Nile virus. Parasitol Res 109:425–430

    Article  PubMed  Google Scholar 

  • Pohlit AM, Lopes NP, Gama RA, Tadei WP, de Andrade Porto VF (2011) Patent literature on mosquito repellent inventions which contain plant essential oils—a review. Planta Med 77:598–617

    Article  CAS  PubMed  Google Scholar 

  • Prajapati V, Tripathi AK, Aggarwal KK, Khanuja SPS (2005) Insecticidal, repellent and oviposition-deterrent activity of selected essential oils against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus. Bioresour Technol 96:1749–1757

    Article  CAS  PubMed  Google Scholar 

  • Prashant RV, Subburaju T, Balakrishnan N (2006) Larvicidal activity of Artemisia nilagirica. Clarke

    Google Scholar 

  • Priestley CM, Williamson EM, Wafford KA, Sattelle DB (2003) Thymol, a constituent of thyme essential oil, is a positive allosteric modulator of human GABAA receptors and a homo‐oligomeric GABA receptor from Drosophila melanogaster. Br J Pharmacol 140(8):1363–1372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pujiarti R, Fentiyanti PK (2017) Chemical compositions and repellent activity of Eucalyptus tereticornis and Eucalyptus deglupta essential oils against Culex quinquefasciatus mosquito. Thai J Pharmaceut Sci 41:19–24

    CAS  Google Scholar 

  • Putievsky E, Galambosi B (1999) Production systems of sweet basil. In: Hiltunen R, Holm Y (eds) Basil: the genus Ocimum. Harwood Academic, Amsterdam, pp 55–59

    Google Scholar 

  • Qnais EY, Abdulla FA, Kaddumi EG, Abdalla SS (2012) Antidiarrheal activity of Laurus nobilis L. leaf extract in rats. J Med Food 15:51–57

    Article  CAS  PubMed  Google Scholar 

  • Quassinti L, Bramucci M, Lupidi G, Barboni L, Ricciutelli M, Sagratini G, Papa F, Caprioli G, Petrelli D, Vitali LA, Vittori S, Maggi F (2013) In vitro biological activity of essential oils and isolated furanosesquiterpenes from the neglected vegetable Smyrnium olusatrum L. (Apiaceae). Food Chem 138:808–813

    Article  CAS  PubMed  Google Scholar 

  • Quassinti L, Maggi F, Barboni L, Ricciutelli M, Cortese M, Papa F, Garulli C, Kalogris C, Vittori S, Bramucci M (2014) Wild celery (Smyrnium olusatrum L.) oil and isofuranodiene induce apoptosis in human colon carcinoma cells. Fitoterapia 97:133–141

    Article  CAS  PubMed  Google Scholar 

  • Racoti A, Buttress AJ, Binner E, Dodds C, Trifan A, Calinescu I (2017) Microwave assisted hydro-distillation of essential oils from fresh ginger root (Zingiber officinale Roscoe). J Essent Oil Res 29:471–480

    Article  CAS  Google Scholar 

  • Rajamma AJ, Dubey S, Sateesha SB, Tiwari SN, Ghosh SK (2011) Comparative larvicidal activity of different species of Ocimum against Culex quinquefasciatus. Nat Prod Res 25:1916–1922

    Article  CAS  PubMed  Google Scholar 

  • Rattan RS (2010) Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Prot 29:913–920

    Article  CAS  Google Scholar 

  • Rey D, Pautou MP, Meyran JC (1999) Histopathological effects of tannic acid on the midgut epithelium of some aquatic diptera larvae. J Invertebr Pathol 73:173–181

    Article  CAS  PubMed  Google Scholar 

  • Rezaei A, Mohajeri D, Muhammad Nejad S, Muhammad Nejad A, Taghizadeh-Jahed M, Khorrami A, Pashazadeh M (2008) Study of histometric and histopathological effects of essential oil of Pelargonium roseum in comparison with phenytoin after surgical trauma on rat's skin. Pharm Sci 3:11–19

    Google Scholar 

  • Rezza G, Nicoletti L, Angelini R, Romi R, Finarelli AC, Panning M, Cordioli P, Fortuna C, Boros S, Magurano F, Silvi G, Angelini P, Dottori M, Ciufolini MG, Majori GC, Cassone A (2007) Infection with chikungunya virus in Italy: an outbreak in a temperate region. Lancet 370:1840–1846

    Article  CAS  PubMed  Google Scholar 

  • Rigau-Pérez JG (2006) Severe dengue: the need for new case definitions. Lancet Infect Dis 6:297–302

    Article  PubMed  Google Scholar 

  • Rocha DK, Matos O, Novo MT, Figueiredo AC, Delgado M, Moiteiro C (2015) Larvicidal activity against Aedes aegypti of Foeniculum vulgare essential oils from Portugal and Cape Verde. Nat Prod Comm 10:677–682

    Google Scholar 

  • Rodrigues LB, Martins AOBPB, Ribeiro-Filho J, Cesário FRAS, Castro FF, de Albuquerque TR, Fernandes MNM, da Silva BAF, Quintans Júnior LJ, Araújo AADS, PDP M, Nunes PS, Matos IG, HDM C, Goncalves Wanderley A (2017) Anti-inflammatory activity of the essential oil obtained from Ocimum basilicum complexed with β-cyclodextrin (β-CD) in mice. Ind Crops Prod 109:836–846

    Article  CAS  Google Scholar 

  • Rubiolo P, Sgorbini B, Liberto E, Cordero C, Bicchi C (2010) Essential oils and volatiles: sample preparation and analysis. A review. Flavour Fragr J 25:282–290

    Article  CAS  Google Scholar 

  • Ryan MF, Byrne O (1988) Plant-insect coevolution and inhibition of acetyl cholinesterase. J Chem Ecol 14:965–1975

    Article  Google Scholar 

  • Sakulku U, Nuchuchua O, Uawongyart N, Puttipipatkhachorn S, Soottitantawat A, Ruktanonchai U (2009) Characterization and mosquito repellent activity of citronella oil nanoemulsion. Int J Pharm 372:105–111

    Article  CAS  PubMed  Google Scholar 

  • Samarasekera R, Kalhari KS, Weerasinghe IS (2005) Mosquitocidal activity of leaf and bark essential oils of Ceylon Cinnamomum zeylanicum. J Essent Oil Res 17:301–303

    Article  CAS  Google Scholar 

  • Samarasekera R, Weerasinghe IS, Hemalal KDP (2008) Insecticidal activity of menthol derivatives against mosquitoes. Pest Manag Sci 64:290–295

    Article  CAS  PubMed  Google Scholar 

  • Sanei-Dehkordi SMM, Vatandoost H, Abai MR (2016) Chemical compositions of the peel essential oil of Citrus aurantium and its natural larvicidal activity against the Malaria Vector Anopheles stephensi (Diptera: Culicidae) in comparison with Citrus paradisi. J Arthropod Borne Dis 10:577–585

    PubMed  PubMed Central  Google Scholar 

  • Sangwan NS, Farooqi AHA, Shabih F, Sangwan RS (2001) Regulation of essential oil production in plants. Plant Growth Regul 34:3–21

    Article  CAS  Google Scholar 

  • Schuler MA (1996) The role of cytochrome 450 monooxygenases in plant insect interactions. Plant Physiol 112:1411–1419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Senthil Nathan S (2007) The use of Eucalyptus tereticornis Sm. (Myrtaceae) oil (leaf extract) as a natural larvicidal agent against the malaria vector Anopheles stephensi Liston (Diptera: Culicidae). Bioresour Technol 98:1856–1860

    Article  PubMed  CAS  Google Scholar 

  • Seo S-M, Park H-M, Park I-K (2012) Larvicidal activity of Ajowan (Trachyspermum ammi) and Peru Balsam (Myroxylon pereira) oils and blends of their constituents against mosquito, Aedes aegypti, acute toxicity on water flea, Daphnia magna, and aqueous residue. J Agric Food Chem 60:5909–5914

    Article  CAS  PubMed  Google Scholar 

  • Setzer WN (2009) Essential oils and anxiolytic aromatherapy. Nat Prod Comm 4:1305–1316

    CAS  Google Scholar 

  • Shrinivas PK, Kudli AP (2008) Market research data on Essential oils and absolutes used in fragrance and flavor industry [Online] http://www.goarticles.com/cgibin/showa.cgi?C=1175757

  • Soleimani-Ahmadi M, Abtahi SM, Madani A, Paksa A, Abadi YS, Gorouhi MA, Sanei-Dehkordi A (2017) Phytochemical profile and mosquito larvicidal activity of the essential oil from aerial parts of Satureja bachtiarica bunge against Malaria and lymphatic filariasis vectors. J Essent Oil Bear Plants 20:328–336

    Article  CAS  Google Scholar 

  • Solomon B, Gebre-Mariam T, Asres K (2012) Mosquito repellent actions of the essential oils of Cymbopogon citratus, Cymbopogon nardus and Eucalyptus citriodora: evaluation and formulations studies. J Essent Oil Bear Plants 15:766–773

    Article  CAS  Google Scholar 

  • Soro LC, Munier S, Pelissier Y, Grosmaire L, Yada R, Kitts D, Atchibri ALO-A, Guzman C, Boudard F, Menut C, Robinson JC, Poucheret P (2016) Influence of geography, seasons and pedology on chemical composition and crossmark anti-inflammatory activities of essential oils from Lippia multiflora Mold leaves. J Ethnopharmacol 194:587–594

    Article  CAS  PubMed  Google Scholar 

  • Sousa RMOF, Rosa JS, Silva CA, Almeida MTM, Novo MT, Cunha AC, Fernandes-Ferreira M (2015) Larvicidal, molluscicidal and nematicidal activities of essential oils and compounds from Foeniculum vulgare. J Pest Sci 88:413–426

    Article  Google Scholar 

  • Stroh J, Wan MT, Isman MB, Moul DJ (1998) Evaluation of the acute toxicity to juvenile Pacific coho salmon and rainbow trout of some plant essential oils, a formulated product, and the carrier. Bull Environ Contam Toxicol 60:923–930

    Article  CAS  PubMed  Google Scholar 

  • Sugumar S, Clarke SK, Nirmala MJ, Tyagi BK, Mukherjee A, Chandrasekaran N (2014) Nanoemulsion of eucalyptus oil and its larvicidal activity against Culex quinquefasciatus. Bull Entomol Res 104:393–402

    Article  CAS  PubMed  Google Scholar 

  • Suresh U, Murugan K, Benelli G, Nicoletti M, Barnard DR, Panneerselvam C, Kumar PM, Subramaniam J, Dinesh D, Chandramohan B (2015) Tackling the growing threat of dengue: Phyllanthus niruri-mediated synthesis of silver nanoparticles and their mosquitocidal properties against the dengue vector Aedes aegypti (Diptera: Culicidae). Parasitol Res 114:1551–1562

    Article  PubMed  Google Scholar 

  • Suwansirisilp K, Viseton S, Prabaripai A, Tanasinchayakul S, Grieco JP, Bangs MJ, Chareonviriyaphap T (2013) Behaviorl responses of Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae) to four essential oils in Thailand. J Pest Sci 86:309–320

    Article  Google Scholar 

  • Tabanca N, Avonto C, Wang M, Parcher JF, Ali A, Demirci B, Raman V, Khan IA (2013) Comparative investigation of Umbellularia californica and Laurus nobilis leaf essential oils and identification of constituents active against Aedes aegypti. J Agric Food Chem 61:12283–12291

    Article  CAS  PubMed  Google Scholar 

  • Tabari MA, Youssefi MR, Maggi F, Benelli G (2017a) Toxic and repellent activity of selected monoterpenoids (thymol, carvacrol and linalool) against the castor bean tick, Ixodes ricinus (Acari: Ixodidae). Vet Parasitol 245:86–91

    Article  CAS  PubMed  Google Scholar 

  • Tabari MA, Youssefi MR, Esfandiari A, Benelli G (2017b) Toxicity of β-citronellol, geraniol and linalool from Pelargonium roseum essential oil against theWest Nile and filariasis vector Culex pipiens (Diptera: Culicidae). Res Vet Sci 114:36–40

    Article  CAS  PubMed  Google Scholar 

  • Tabari MA, Youssefi MR, Esfandiari A, Benelli G (2017c) Toxicity of β-citronellol, geraniol and linalool from Pelargonium roseum essential oil against the West Nile and filariasis vector Culex pipiens (Diptera: Culicidae). Res Vet Sci 114:36–40

    Article  CAS  PubMed  Google Scholar 

  • Tak J-H, Jovel E, Isman MB (2015) Comparative and synergistic activity of Rosmarinus officinalis L. essential oil constituents against the larvae and an ovarian cell line of the cabbage looper, Trichoplusia ni (Lepidoptera: Noctuidae). Pest Manag Sci 72:474–480

    Article  PubMed  CAS  Google Scholar 

  • Teixeira B, Marques A, Ramos C, Batista I, Serrano C, Matos O, Neng NR, Nogueira JMF, Saraiva JA, Nunes ML (2012) European pennyroyal (Mentha pulegium) from Portugal: chemical composition of essential oil and antioxidant and antimicrobial properties of extracts and essential oil. Ind Crops Prod 36:81–87

    Article  CAS  Google Scholar 

  • Thakore Y (2006) The biopesticide market for global agricultural use. Indust Biotechnol 2:194–208

    Article  Google Scholar 

  • Traboulsi AF, Taoubi K, El-Haj S, Bessiere JM, Rammal S (2002) Insecticidal properties of essential plant oils against the mosquito Culex pipiens molestus (Diptera: Culicidae). Pest Manag Sci 58:491–495

    Article  CAS  PubMed  Google Scholar 

  • Trease GE, Evans WC (1985) Pharmacognosy, 12th edn. Bailliére Tindall, Eastbourne, p 452

    Google Scholar 

  • Tripathi AK, Prajapati V, Ahmad A, Aggarwal KK, Khanuja SPS (2004) Piperitenone oxide as toxic, repellent, and reproduction retardant toward malarial vector Anopheles stephensi (Diptera: Anophelinae). J Med Entomol 41:691–698

    Article  CAS  PubMed  Google Scholar 

  • Uter W, Schmidt E, Geier J, Lessmann H, Schnuch A, Frosch P (2010) Contact allergy to essential oils: current patch test results (2000–2008) from the Information Network of Departments of Dermatology (IVDK)∗. Contact Dermatitis 63:277–283

    Article  PubMed  Google Scholar 

  • Vadivalagan C, Karthika P, Murugan K, Panneerselvam C, Del Serrone P, Benelli G (2017) Exploring genetic variation in haplotypes of the filariasis vector Culex quinquefasciatus (Diptera: Culicidae) through DNA barcoding. Acta Trop 169:43–50

    Article  CAS  PubMed  Google Scholar 

  • Valentin A, Pelissier Y, Benoît F, Marion C, Kone D, Mallie M, Bastide JM, Bessiere JM (1995) Composition and anti-malaria activity in vitro of volatile components of Lippia multiflora. Phytotherapie 40:1439–1442

    CAS  Google Scholar 

  • van der Watt G, Laugharne J, Janca A (2008) Complementary and alternative medicine in the treatment of anxiety and depression. Curr Opin Psychiatry 21:37–42

    Article  PubMed  Google Scholar 

  • Varga F, Carovic-Stanko K, Ristic M, Grdisa M, Liber Z, Satovic Z (2017) Morphological and biochemical intraspecific characterization of Ocimum basilicum L. Ind Crops Prod 109:611–618

    Article  CAS  Google Scholar 

  • Vishwakarma GS, Gautam N, Babu JN, Mittal S, Jaitak V (2016) Polymeric encapsulates of essential oils and their constituents: a review of preparation techniques, characterization, and sustainable release mechanisms. Polym Rev 56:668–701

    Article  CAS  Google Scholar 

  • Vitali LA, Beghelli D, Biapa Nya PC, Bistoni O, Cappellacci L, Damiano S, Lupidi G, Maggi F, Orsomando G, Papa F, Petrelli D, Petrelli R, Quassinti L, Sorci L, Zadeh MM, Bramucci M (2016) Diverse biological effects of the essential oil from Iranian Trachyspermum ammi. Arab J Chem 9:775–786

    Article  CAS  Google Scholar 

  • Vuong QV, Chalmers AC, Bhuyan DJ, Bowyer MC, Scarlett CJ (2015) Botanical, phytochemical, and anticancer properties of the Eucalyptus species. Chem Biodivers 12:907–924

    Article  CAS  PubMed  Google Scholar 

  • Wachira SW, Omar S, Jacob JW, Wahome M, Alborn HT, Spring DR, Masiga DK, Torto B (2014) Toxicity of six plant extracts and two pyridine alkaloids from Ricinus communis against the malaria vector Anopheles gambiae. Parasit Vectors 7:312

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Waitumbi JN, Kuypers J, Anyona SB, Koros JN, Polhemus ME, Gerlach J, Steele M, Englund JA, Neuzil KM, Domingo GJ (2010) Short report: outpatient upper respiratory tract viral infections in children with Malaria symptoms in Western Kenya. Am J Trop Med Hyg 83:1010–1013

    Article  PubMed  PubMed Central  Google Scholar 

  • WHO (2010) Media Centre. Malaria. World Health Organization (WHO) Media Centre. Available at http://www.who.int/mediacentre/factsheets/fs094/en/

  • WHO (2012) Handbook for integrated vector management. World Health Organization, Geneva

    Google Scholar 

  • WHO (2014) Lymphatic filariasis. Fact sheet No 102. World Health Organization, Geneva

    Google Scholar 

  • Wijers DJB, McMahon JE (1976) Early signs and symptoms of bancroftian filariasis in males at the East African coast. East Afr Med J 53:57–63

    CAS  PubMed  Google Scholar 

  • Wing KD, Sacher M, Kagaya Y, Tsurubuchi Y, Mulderig L, Connair M, Schnee M (2000) Bioactivation and mode of action of the oxadiazine indoxacarb in insects. Crop Prot 19:537–545

    Article  CAS  Google Scholar 

  • Wink M (2003) Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry 64:3–19

    Article  CAS  PubMed  Google Scholar 

  • Wittstock U, Greshenzon J (2002) Constitutive plant toxins and their role in defense against herbivores and pathogens. Curr Opin Plant Biol 5:300–307

    Article  CAS  PubMed  Google Scholar 

  • Wong H-Y, K-d T, Liu Y-H, S-m Y, Chen T-W, Chering J, Chou K-S, Chang C-M, Yao BT, Cherng J-M (2016) Cinnamomum verum Component 2-Methoxycinnamaldehyde: a novel anticancer agent with both anti-topoisomerase I and II activities in human lung adenocarcinoma A549 cells in vitro and in vivo. Phytother Res 30:331–340

    Article  CAS  PubMed  Google Scholar 

  • Yang P, Ma Y (2005) Repellent effect of plant essential oils against Aedes albopictus. J Vector Ecol 30:231–234

    PubMed  Google Scholar 

  • Yeh H-Y, Chuang C-H, Chen H-C, Wan C-J, Chen T, Lin L-Y (2014) Bioactive components analysis of two various gingers (Zingiber officinale Roscoe) and antioxidant effect of ginger extracts. LWT Food SciTechnol 55:329–334

    Article  CAS  Google Scholar 

  • Zarshenas MM, Moein M, Samani SM, Petramfar P (2014) An overwiew on Ajwain (Trachyspermum ammi) pharmacological effects; modern and traditional. J Nat Rem 14:98–105

    Google Scholar 

  • Zhu L, Tian Y (2013) Chemical composition and larvicidal activity of essential oil of Artemisia gilvescens against Anopheles anthropophagus. Parasitol Res 112:1137–1142

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filippo Maggi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maggi, F., Benelli, G. (2018). Essential Oils from Aromatic and Medicinal Plants as Effective Weapons Against Mosquito Vectors of Public Health Importance. In: Benelli, G., Mehlhorn, H. (eds) Mosquito-borne Diseases. Parasitology Research Monographs, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-94075-5_6

Download citation

Publish with us

Policies and ethics