Skip to main content

Advertisement

SpringerLink
Go to cart
Book cover

Entity-Oriented Search pp 299–336Cite as

  1. Home
  2. Entity-Oriented Search
  3. Chapter
Utilizing Entities for an Enhanced Search Experience

Utilizing Entities for an Enhanced Search Experience

  • Krisztian Balog4 
  • Chapter
  • Open Access
  • First Online: 03 October 2018
  • 19k Accesses

  • 1 Citations

Part of the The Information Retrieval Series book series (INRE,volume 39)

Abstract

This chapter presents a selection of topics, where entities are utilized with the overall aim of improving the users’ search experiences. First, we discuss techniques for assisting users with articulating their information needs, including query assistance services and specialized query building interfaces. Next, we turn to the question of result presentation and introduce entity cards. Finally, we study entity recommendation methods that present users with contextual suggestions, encourage exploration, and allow for serendipitous discoveries.

Download chapter PDF

References

  1. Agarwal, G., Kabra, G., Chang, K.C.C.: Towards rich query interpretation: Walking back and forth for mining query templates. In: Proceedings of the 19th international conference on World wide web, WWW ’10, pp. 1–10. ACM (2010). doi: 10.1145/1772690.1772692

  2. Aggarwal, N., Mika, P., Blanco, R., Buitelaar, P.: Leveraging Wikipedia knowledge for entity recommendations. In: Proceedings of the ISWC 2015 Posters & Demonstrations Track co-located with the 14th International Semantic Web Conference, ISWC ’15. Springer (2015)

    Google Scholar 

  3. Althoff, T., Dong, X.L., Murphy, K., Alai, S., Dang, V., Zhang, W.: TimeMachine: Timeline generation for knowledge-base entities. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’15, pp. 19–28. ACM (2015). doi: 10.1145/2783258.2783325

  4. Bailey, P., Craswell, N., White, R.W., Chen, L., Satyanarayana, A., Tahaghoghi, S.M.M.: Evaluating whole-page relevance. In: Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’10, pp. 767–768. ACM (2010). doi: 10.1145/1835449.1835606

  5. Bar-Yossef, Z., Kraus, N.: Context-sensitive query auto-completion. In: Proceedings of the 20th International Conference on World Wide Web, WWW ’11, pp. 107–116. ACM (2011). doi: 10.1145/1963405.1963424

  6. Bast, H., Bäurle, F., Buchhold, B., Haussmann, E.: Semantic full-text search with broccoli. In: Proceedings of the 37th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’14, pp. 1265–1266. ACM (2014). doi: 10.1145/2600428.2611186

  7. Bast, H., Buchhold, B., Haussmann, E.: Relevance scores for triples from type-like relations. In: Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’15, pp. 243–252. ACM (2015). doi: 10.1145/2766462.2767734

  8. Bi, B., Ma, H., Hsu, B.J.P., Chu, W., Wang, K., Cho, J.: Learning to recommend related entities to search users. In: Proceedings of the Eighth ACM International Conference on Web Search and Data Mining, WSDM ’15, pp. 139–148. ACM (2015). doi: 10.1145/2684822.2685304

  9. Blanco, R., Cambazoglu, B.B., Mika, P., Torzec, N.: Entity recommendations in web search. In: Proceedings of the 12th International Semantic Web Conference, ISWC ’13, pp. 33–48. Springer (2013). doi: 10.1007/978-3-642-41338-4_3

    Google Scholar 

  10. Boldi, P., Bonchi, F., Castillo, C., Donato, D., Gionis, A., Vigna, S.: The query-flow graph: Model and applications. In: Proceedings of the 17th ACM Conference on Information and Knowledge Management, CIKM ’08, pp. 609–618. ACM (2008). doi: 10.1145/1458082.1458163

  11. Bonchi, F., Perego, R., Silvestri, F., Vahabi, H., Venturini, R.: Efficient query recommendations in the long tail via center-piece subgraphs. In: Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’12, pp. 345–354. ACM (2012). doi: 10.1145/2348283.2348332

  12. Bordino, I., De Francisci Morales, G., Weber, I., Bonchi, F.: From Machu_Picchu to “rafting the urubamba river”: Anticipating information needs via the entity-query graph. In: Proceedings of the Sixth ACM International Conference on Web Search and Data Mining, WSDM ’13, pp. 275–284. ACM (2013). doi: 10.1145/2433396.2433433

  13. Bota, H.: Nonlinear composite search results. In: Proceedings of the 2016 ACM on Conference on Human Information Interaction and Retrieval, CHIIR ’16, pp. 345–347. ACM (2016). doi: 10.1145/2854946.2854956

  14. Bota, H., Zhou, K., Jose, J.M.: Playing your cards right: The effect of entity cards on search behaviour and workload. In: Proceedings of the 2016 ACM on Conference on Human Information Interaction and Retrieval, CHIIR ’16, pp. 131–140. ACM (2016). doi: 10.1145/2854946.2854967

  15. Cai, F., de Rijke, M.: A Survey of Query Auto Completion in Information Retrieval, vol. 10. Now Publishers Inc. (2016)

    Google Scholar 

  16. Cheng, G., Tran, T., Qu, Y.: RELIN: Relatedness and informativeness-based centrality for entity summarization. In: Proceedings of the 10th International Conference on The Semantic Web - Volume Part I, ISWC’11, pp. 114–129. Springer (2011). doi: 10.1007/978-3-642-25073-6_8

    CrossRef  Google Scholar 

  17. Dalvi, B., Minkov, E., Talukdar, P.P., Cohen, W.W.: Automatic gloss finding for a knowledge base using ontological constraints. In: Proceedings of the Eighth ACM International Conference on Web Search and Data Mining, WSDM ’15, pp. 369–378. ACM (2015). doi: 10.1145/2684822.2685288

  18. Dehghani, M., Rothe, S., Alfonseca, E., Fleury, P.: Learning to attend, copy, and generate for session-based query suggestion. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, CIKM ’17, pp. 1747–1756. ACM (2017). doi: 10.1145/3132847.3133010

  19. Desrosiers, C., Karypis, G.: A Comprehensive Survey of Neighborhood-based Recommendation Methods, pp. 107–144. Springer (2011)

    Google Scholar 

  20. Fernández-Tobías, I., Blanco, R.: Memory-based recommendations of entities for web search users. In: Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, CIKM ’16, pp. 35–44. ACM (2016). doi: 10.1145/2983323.2983823

  21. Gkatzia, D., Lemon, O., Rieser, V.: Natural language generation enhances human decision-making with uncertain information. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, ACL’ 16. The Association for Computer Linguistics (2016)

    Google Scholar 

  22. Gunaratna, K., Thirunarayan, K., Sheth, A.: FACES: Diversity-aware entity summarization using incremental hierarchical conceptual clustering. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, AAAI’15, pp. 116–122. AAAI Press (2015)

    Google Scholar 

  23. Hasibi, F., Balog, K., Bratsberg, S.E.: Dynamic factual summaries for entity cards. In: Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’17. ACM (2017). doi: 10.1145/3077136.3080810

  24. Hoffart, J., Milchevski, D., Weikum, G.: STICS: Searching with strings, things, and cats. In: Proceedings of the 37th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’14, pp. 1247–1248. ACM (2014). doi: 10.1145/2600428.2611177

  25. Huang, Z., Cautis, B., Cheng, R., Zheng, Y.: KB-enabled query recommendation for long-tail queries. In: Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, CIKM ’16, pp. 2107–2112. ACM (2016). doi: 10.1145/2983323.2983650

  26. Jeh, G., Widom, J.: Scaling personalized web search. In: Proceedings of the 12th International Conference on World Wide Web, WWW ’03, pp. 271–279. ACM (2003). doi: 10.1145/775152.775191

  27. Kang, C., Vadrevu, S., Zhang, R., van Zwol, R., Pueyo, L.G., Torzec, N., He, J., Chang, Y.: Ranking related entities for web search queries. In: Proceedings of the 20th International Conference Companion on World Wide Web, WWW ’11, pp. 67–68. ACM (2011). doi: 10.1145/1963192.1963227

  28. Lagun, D., Hsieh, C.H., Webster, D., Navalpakkam, V.: Towards better measurement of attention and satisfaction in mobile search. In: Proceedings of the 37th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’14, pp. 113–122. ACM (2014). doi: 10.1145/2600428.2609631

  29. Lao, N., Cohen, W.W.: Relational retrieval using a combination of path-constrained random walks. Mach. Learn. 81(1), 53–67 (2010). doi: 10.1007/s10994-010-5205-8

    CrossRef  MathSciNet  Google Scholar 

  30. Lee, H., Peirsman, Y., Chang, A., Chambers, N., Surdeanu, M., Jurafsky, D.: Stanford’s multi-pass sieve coreference resolution system at the CoNLL-2011 Shared task. In: Proceedings of the Fifteenth Conference on Computational Natural Language Learning: Shared Task, CONLL Shared Task ’11, pp. 28–34. Association for Computational Linguistics (2011)

    Google Scholar 

  31. Lee, J., Fuxman, A., Zhao, B., Lv, Y.: Leveraging knowledge bases for contextual entity exploration. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’15, pp. 1949–1958. ACM (2015). doi: 10.1145/2783258.2788564

  32. Meij, E., Mika, P., Zaragoza, H.: An evaluation of entity and frequency based query completion methods. In: Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’09, pp. 678–679. ACM (2009). doi: 10.1145/1571941.1572074

  33. Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Proceedings of the 26th International Conference on Neural Information Processing Systems, NIPS’13, pp. 3111–3119. Curran Associates Inc. (2013)

    Google Scholar 

  34. Miliaraki, I., Blanco, R., Lalmas, M.: From “Selena Gomez” to “Marlon Brando”: Understanding explorative entity search. In: Proceedings of the 24th International Conference on World Wide Web, WWW ’15, pp. 765–775. International World Wide Web Conferences Steering Committee (2015). doi: 10.1145/2736277.2741284

  35. Milne, D., Witten, I.H.: An effective, low-cost measure of semantic relatedness obtained from Wikipedia links. In: Proceeding of AAAI Workshop on Wikipedia and Artificial Intelligence: An Evolving Synergy, pp. 25–30. AAAI Press (2008)

    Google Scholar 

  36. Navalpakkam, V., Jentzsch, L., Sayres, R., Ravi, S., Ahmed, A., Smola, A.: Measurement and modeling of eye-mouse behavior in the presence of nonlinear page layouts. In: Proceedings of the 22nd International Conference on World Wide Web, WWW ’13, pp. 953–964. ACM (2013). doi: 10.1145/2488388.2488471

  37. Ozertem, U., Chapelle, O., Donmez, P., Velipasaoglu, E.: Learning to suggest: A machine learning framework for ranking query suggestions. In: Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’12, pp. 25–34. ACM (2012). doi: 10.1145/2348283.2348290

  38. Passant, A.: Dbrec: Music recommendations using DBpedia. In: Proceedings of the 9th International Semantic Web Conference on The Semantic Web - Volume Part II, ISWC’10, pp. 209–224. Springer (2010)

    Google Scholar 

  39. Reinanda, R., Meij, E., de Rijke, M.: Mining, ranking and recommending entity aspects. In: Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’15, pp. 263–272. ACM (2015). doi: 10.1145/2766462.2767724

  40. Rybak, J., Balog, K., Nørvåg, K.: ExperTime: Tracking expertise over time. In: Proceedings of the 37th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’14 (2014). doi: 10.1145/2600428.2611190

  41. Saldanha, G., Biran, O., McKeown, K., Gliozzo, A.: An entity-focused approach to generating company descriptions. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, ACL ’16. The Association for Computer Linguistics (2016)

    Google Scholar 

  42. Schmidt, A., Hoffart, J., Milchevski, D., Weikum, G.: Context-sensitive auto-completion for searching with entities and categories. In: Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’16, pp. 1097–1100. ACM (2016). doi: 10.1145/2911451.2911461

  43. Sordoni, A., Bengio, Y., Vahabi, H., Lioma, C., Grue Simonsen, J., Nie, J.Y.: A hierarchical recurrent encoder-decoder for generative context-aware query suggestion. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, CIKM ’15, pp. 553–562. ACM (2015). doi: 10.1145/2806416.2806493

  44. Strube, M., Ponzetto, S.P.: WikiRelate! - Computing semantic relatedness using Wikipedia. In: Proceedings of the 21st National Conference on Artificial Intelligence - Volume 2, AAAI’06, pp. 1419–1424. AAAI Press (2006)

    Google Scholar 

  45. Sun, Y., Han, J., Yan, X., Yu, P.S., Wu, T.: Pathsim: Meta path-based top-k similarity search in heterogeneous information networks. Proceedings of the VLDB Endowment 4(11), 992–1003 (2011)

    Google Scholar 

  46. Szpektor, I., Gionis, A., Maarek, Y.: Improving recommendation for long-tail queries via templates. In: Proceedings of the 20th International Conference on World Wide Web, WWW’ 11, pp. 47–56. ACM (2011). doi: 10.1145/1963405.1963416

  47. Thalhammer, A., Lasierra, N., Rettinger, A.: LinkSUM: Using link analysis to summarize entity data. In: Proc. of 16th International Web Engineering Conference, ICWE ’16, pp. 244–261. Springer (2016). doi: 10.1007/978-3-319-38791-8_14

    Google Scholar 

  48. Thalhammer, A., Rettinger, A.: Browsing DBpedia entities with summaries. In: The Semantic Web: ESWC 2014 Satellite Events, pp. 511–515 (2014)

    Google Scholar 

  49. Tombros, A., Sanderson, M.: Advantages of query biased summaries in information retrieval. In: Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’98, pp. 2–10. ACM (1998). doi: 10.1145/290941.290947

  50. Tonon, A., Catasta, M., Prokofyev, R., Demartini, G., Aberer, K., Cudré-Mauroux, P.: Contextualized ranking of entity types based on knowledge graphs. Web Semant. 37–38, 170–183 (2016). doi: 10.1016/j.websem.2015.12.005

    CrossRef  Google Scholar 

  51. Tuan, T.A., Elbassuoni, S., Preda, N., Weikum, G.: CATE: Context-aware timeline for entity illustration. In: Proceedings of the 20th International Conference Companion on World Wide Web, WWW ’11, pp. 269–272. ACM (2011). doi: 10.1145/1963192.1963306

  52. Vadrevu, S., Tu, Y., Salvetti, F.: Ranking relevant attributes of entity in structured knowledge base (2016)

    Google Scholar 

  53. Voskarides, N., Meij, E., de Rijke, M.: Generating descriptions of entity relationships. In: Proceedings of the 39th European Conference on Information Retrieval, ECIR ’17. Springer (2017). doi: 10.1007/978-3-319-56608-5_25

    Google Scholar 

  54. Voskarides, N., Meij, E., Tsagkias, M., de Rijke, M., Weerkamp, W.: Learning to explain entity relationships in knowledge graphs. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 564–574. Association for Computational Linguistics (2015)

    Google Scholar 

  55. White, R.W.: Interactions with Search Systems. Cambridge University Press (2016)

    Google Scholar 

  56. Williams, K., Kiseleva, J., Crook, A.C., Zitouni, I., Awadallah, A.H., Khabsa, M.: Is this your final answer?: Evaluating the effect of answers on good abandonment in mobile search. In: Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’16, pp. 889–892. ACM (2016). doi: 10.1145/2911451.2914736

  57. Yu, X., Ma, H., Hsu, B.J.P., Han, J.: On building entity recommender systems using user click log and Freebase knowledge. In: Proceedings of the 7th ACM International Conference on Web Search and Data Mining, WSDM ’14, pp. 263–272. ACM (2014). doi: 10.1145/2556195.2556233

  58. van Zwol, R., Pueyo, L.G., Muralidharan, M., Sigurbjornsson, B.: Ranking entity facets based on user click feedback. In: Proceedings of the 4th IEEE International Conference on Semantic Computing, pp. 192–199 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. University of Stavanger, Stavanger, Norway

    Krisztian Balog

Authors
  1. Krisztian Balog
    View author publications

    You can also search for this author in PubMed Google Scholar

Rights and permissions

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this book are included in the book's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the book's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Reprints and Permissions

Copyright information

© 2018 The Editor(s) (if applicable) and the Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Balog, K. (2018). Utilizing Entities for an Enhanced Search Experience. In: Entity-Oriented Search. The Information Retrieval Series, vol 39. Springer, Cham. https://doi.org/10.1007/978-3-319-93935-3_9

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-319-93935-3_9

  • Published: 03 October 2018

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93933-9

  • Online ISBN: 978-3-319-93935-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • Your US state privacy rights
  • How we use cookies
  • Your privacy choices/Manage cookies
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.