Skip to main content

Advertisement

SpringerLink
Go to cart
Book cover

Entity-Oriented Search pp 101–143Cite as

  1. Home
  2. Entity-Oriented Search
  3. Chapter
Semantically Enriched Models for Entity Ranking

Semantically Enriched Models for Entity Ranking

  • Krisztian Balog4 
  • Chapter
  • Open Access
  • First Online: 03 October 2018
  • 19k Accesses

  • 1 Citations

Part of the The Information Retrieval Series book series (INRE,volume 39)

Abstract

Perhaps the most exciting challenge and opportunity in entity retrieval is how to leverage entity-specific properties—attributes, types, and relationships—to improve retrieval performance. In this chapter, we take a departure from purely term-based approaches toward semantically enriched retrieval models. We look at a number of specific entity retrieval tasks that have been studied at various benchmarking campaigns. Specifically, these tasks are ad hoc entity retrieval, list search, related entity finding, and similar entity search. Additionally, we also consider measures of (static) entity importance.

Download chapter PDF

References

  1. Balmin, A., Hristidis, V., Papakonstantinou, Y.: Objectrank: Authority-based keyword search in databases. In: Proceedings of the Thirtieth International Conference on Very Large Data Bases - Volume 30, VLDB ’04, pp. 564–575. VLDB Endowment (2004)

    Google Scholar 

  2. Balog, K.: On the investigation of similarity measures for product resolution. In: Proceedings of the Workshop on Discovering Meaning On the Go in Large Heterogeneous Data, LHD-11 (2011)

    Google Scholar 

  3. Balog, K., Bron, M., De Rijke, M.: Query modeling for entity search based on terms, categories, and examples. ACM Trans. Inf. Syst. 29(4), 22:1–22:31 (2011a)

    CrossRef  Google Scholar 

  4. Balog, K., de Rijke, M.: Finding similar experts. In: Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval, SIGIR ’07, pp. 821–822. ACM (2007). doi: 10.1145/1277741.1277926

  5. Balog, K., Serdyukov, P., de Vries, A.P.: Overview of the TREC 2010 Entity track. In: Proceedings of the Nineteenth Text REtrieval Conference, TREC ’10. NIST (2011b)

    Google Scholar 

  6. Balog, K., Serdyukov, P., de Vries, A.P.: Overview of the TREC 2011 Entity track. In: The Twentieth Text REtrieval Conference Proceedings, TREC ’11. NIST (2012)

    Google Scholar 

  7. Balog, K., de Vries, A.P., Serdyukov, P., Thomas, P., Westerveld, T.: Overview of the TREC 2009 Entity track. In: Proceedings of the Eighteenth Text REtrieval Conference, TREC ’09. NIST (2010)

    Google Scholar 

  8. Bamba, B., Mukherjea, S.: Utilizing resource importance for ranking semantic web query results. In: Proceedings of the Second International Conference on Semantic Web and Databases, SWDB ’04, pp. 185–198. Springer (2005). doi: 10.1007/978-3-540-31839-2_14

    CrossRef  Google Scholar 

  9. Bast, H., Bäurle, F., Buchhold, B., Haussmann, E.: Semantic full-text search with Broccoli. In: Proceedings of the 37th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’14, pp. 1265–1266. ACM (2014). doi: 10.1145/2600428.2611186

  10. Blanco, R., Halpin, H., Herzig, D.M., Mika, P., Pound, J., Thompson, H.S., Duc, T.T.: Entity search evaluation over structured web data. In: Proceedings of the 1st International Workshop on Entity-Oriented Search, EOS ’11, pp. 65–71 (2011)

    Google Scholar 

  11. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. In: Seventh International World-Wide Web Conference, WWW ’98 (1998)

    Google Scholar 

  12. Bron, M., Balog, K., de Rijke, M.: Ranking related entities: Components and analyses. In: Proceedings of the 19th ACM International Conference on Information and Knowledge Management, CIKM ’10, pp. 1079–1088 (2010). doi: 10.1145/1871437.1871574

  13. Bron, M., Balog, K., de Rijke, M.: Example-based entity search in the web of data. In: Proceedings of the 35th European conference on Advances in Information Retrieval, ECIR ’13, pp. 392–403. Springer (2013). doi: 10.1007/978-3-642-36973-5_33

    Google Scholar 

  14. Campinas, S., Delbru, R., Tummarello, G.: Effective retrieval model for entity with multi-valued attributes: BM25MF and beyond. In: Proceedings of the 18th International Conference on Knowledge Engineering and Knowledge Management, EKAW ’12, pp. 200–215. Springer (2012). doi: 10.1007/978-3-642-33876-2_19

    Google Scholar 

  15. Ciglan, M., Nørvåg, K., Hluchý, L.: The SemSets model for ad-hoc semantic list search. In: Proceedings of the 21st International Conference on World Wide Web, WWW ’12, pp. 131–140. ACM (2012). doi: 10.1145/2187836.2187855

  16. Dali, L., Fortuna, B., Duc, T.T., Mladenić, D.: Query-independent learning to rank for RDF entity search. In: Proceedings of the 9th International Conference on The Semantic Web: Research and Applications, ESWC’12, pp. 484–498. Springer (2012). doi: 10.1007/978-3-642-30284-8_39

    Google Scholar 

  17. Delbru, R., Toupikov, N., Catasta, M., Tummarello, G., Decker, S.: Hierarchical link analysis for ranking web data. In: Proceedings of the 7th International Conference on The Semantic Web: Research and Applications - Volume Part II, ESWC’10, pp. 225–239. Springer (2010). doi: 10.1007/978-3-642-13489-0_16

    Google Scholar 

  18. Demartini, G., Firan, C.S., Iofciu, T., Krestel, R., Nejdl, W.: Why finding entities in Wikipedia is difficult, sometimes. Information Retrieval 13(5), 534–567 (2010a). doi: 10.1007/s10791-010-9135-7

    CrossRef  Google Scholar 

  19. Demartini, G., Iofciu, T., de Vries, A.: Overview of the INEX 2009 Entity Ranking track. In: Geva, S., Kamps, J., Trotman, A. (eds.) Focused Retrieval and Evaluation, Lecture Notes in Computer Science, vol. 6203, pp. 254–264. Springer (2010b). doi: 10.1007/978-3-642-14556-8_26

    CrossRef  Google Scholar 

  20. Demartini, G., de Vries, A.P., Iofciu, T., Zhu, J.: Overview of the INEX 2008 Entity Ranking track. In: Advances in Focused Retrieval: 7th International Workshop of the Initiative for the Evaluation of XML Retrieval (INEX 2008), pp. 243–252 (2009). doi: 10.1007/978-3-642-03761-0_25

    Google Scholar 

  21. Di, W., Sundaresan, N., Piramuthu, R., Bhardwaj, A.: Is a picture really worth a thousand words? - on the role of images in e-commerce. In: Proceedings of the 7th ACM International Conference on Web Search and Data Mining, WSDM ’14, pp. 633–642. ACM (2014). doi: 10.1145/2556195.2556226

  22. Fang, Y., Si, L.: Related entity finding by unified probabilistic models. World Wide Web 18(3), 521–543 (2015). doi: 10.1007/s11280-013-0267-8

    CrossRef  Google Scholar 

  23. Franz, T., Schultz, A., Sizov, S., Staab, S.: TripleRank: Ranking semantic web data by tensor decomposition. In: Proceedings of the 8th International Semantic Web Conference, ISWC ’09, pp. 213–228. Springer (2009). doi: 10.1007/978-3-642-04930-9_14

    Google Scholar 

  24. Goswami, A., Chittar, N., Sung, C.H.: A study on the impact of product images on user clicks for online shopping. In: Proceedings of the 20th International Conference Companion on World Wide Web, WWW ’11, pp. 45–46. ACM (2011). doi: 10.1145/1963192.1963216

  25. Hasibi, F., Balog, K., Bratsberg, S.E.: Exploiting entity linking in queries for entity retrieval. In: Proceedings of the 2016 ACM on International Conference on the Theory of Information Retrieval, ICTIR ’16, pp. 209–218. ACM (2016). doi: 10.1145/2970398.2970406

  26. He, Y., Xin, D.: SEISA: Set expansion by iterative similarity aggregation. In: Proceedings of the 20th International Conference on World Wide Web, WWW ’11. ACM (2011). doi: 10.1145/1963405.1963467

  27. Hoffart, J., Seufert, S., Nguyen, D.B., Theobald, M., Weikum, G.: KORE: Keyphrase overlap relatedness for entity disambiguation. In: Proceedings of the 21st ACM International Conference on Information and Knowledge Management, CIKM ’12, pp. 545–554. ACM (2012). doi: 10.1145/2396761.2396832

  28. Hofmann, K., Balog, K., Bogers, T., de Rijke, M.: Contextual factors for finding similar experts. Journal of the American Society for Information Science and Technology 61(5), 994–1014 (2010). doi: https://doi.org/10.1002/asi.v61:5

  29. Hogan, A., Harth, A., Decker, S.: ReConRank: A scalable ranking method for semantic web data with context. In: 2nd Workshop on Scalable Semantic Web Knowledge Base Systems (2006)

    Google Scholar 

  30. Jeh, G., Widom, J.: SimRank: A measure of structural-context similarity. In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’02, pp. 538–543. ACM (2002). doi: 10.1145/775047.775126

  31. Kamvar, S.D., Haveliwala, T.H., Manning, C.D., Golub, G.H.: Extrapolation methods for accelerating pagerank computations. In: Proceedings of the 12th International Conference on World Wide Web, WWW ’03, pp. 261–270. ACM (2003). doi: 10.1145/775152.775190

  32. Kaptein, R., Kamps, J.: Exploiting the category structure of Wikipedia for entity ranking. Artificial Intelligence 194, 111–129 (2013). doi: 10.1016/j.artint.2012.06.003

    CrossRef  Google Scholar 

  33. Kaptein, R., Koolen, M., Kamps, J.: Result diversity and entity ranking experiments: anchors, links, text and Wikipedia. In: Proceedings of the Eighteenth Text REtrieval Conference, TREC ’09. NIST (2010a)

    Google Scholar 

  34. Kaptein, R., Serdyukov, P., De Vries, A., Kamps, J.: Entity ranking using Wikipedia as a pivot. In: Proceedings of the 19th ACM international conference on Information and knowledge management, CIKM ’10, pp. 69–78. ACM (2010b). doi: 10.1145/1871437.1871451

  35. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM 46(5), 604–632 (1999). doi: 10.1145/324133.324140

    CrossRef  MathSciNet  Google Scholar 

  36. Li, X., Li, C., Yu, C.: EntityEngine: Answering entity-relationship queries using shallow semantics. In: Proceedings of the 19th ACM International Conference on Information and Knowledge Management, CIKM ’10, pp. 1925–1926. ACM (2010). doi: 10.1145/1871437.1871766

  37. Lin, Y., Michel, J.B., Aiden, E.L., Orwant, J., Brockman, W., Petrov, S.: Syntactic annotations for the Google books Ngram corpus. In: Proceedings of the ACL 2012 System Demonstrations, ACL ’12, pp. 169–174. Association for Computational Linguistics (2012)

    Google Scholar 

  38. Losada, D.E., Azzopardi, L.: Assessing multivariate Bernoulli models for information retrieval. ACM Trans. Inf. Syst. 26(3), 17:1–17:46 (2008). doi: 10.1145/1361684.1361690

    CrossRef  Google Scholar 

  39. Metzger, S., Schenkel, R., Sydow, M.: QBEES: Query-by-example entity search in semantic knowledge graphs based on maximal aspects, diversity-awareness and relaxation. J. Intell. Inf. Syst. 49(3), 333–366 (2017). doi: 10.1007/s10844-017-0443-x

    CrossRef  Google Scholar 

  40. Metzler, D., Croft, W.B.: A Markov Random Field model for term dependencies. In: Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’05, pp. 472–479. ACM (2005). doi: 10.1145/1076034.1076115

  41. Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Proceedings of the 26th International Conference on Neural Information Processing Systems, NIPS’13, pp. 3111–3119. Curran Associates Inc. (2013)

    Google Scholar 

  42. Milne, D., Witten, I.H.: Learning to link with Wikipedia. In: Proceedings of the 17th ACM Conference on Information and Knowledge Management, CIKM ’08, pp. 509–518 (2008). doi: 10.1145/1458082.1458150

  43. Minkov, E., Cohen, W.W.: Improving graph-walk-based similarity with reranking: Case studies for personal information management. ACM Trans. Inf. Syst. 29(1), 4:1–4:52 (2010). doi: 10.1145/1877766.1877770

    CrossRef  Google Scholar 

  44. Nie, Z., Zhang, Y., Wen, J.R., Ma, W.Y.: Object-level ranking: Bringing order to web objects. In: Proceedings of the 14th International Conference on World Wide Web, WWW ’05, pp. 567–574. ACM (2005). doi: 10.1145/1060745.1060828

  45. Pehcevski, J., Thom, J.A., Vercoustre, A.M., Naumovski, V.: Entity ranking in Wikipedia: utilising categories, links and topic difficulty prediction. Information Retrieval 13(5), 568–600 (2010). doi: 10.1007/s10791-009-9125-9

    CrossRef  Google Scholar 

  46. Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing, EMNLP ’14, pp. 1532–1543 (2014)

    Google Scholar 

  47. Raviv, H., Carmel, D., Kurland, O.: A ranking framework for entity oriented search using Markov Random Fields. In: Proceedings of the 1st Joint International Workshop on Entity-Oriented and Semantic Search, JIWES ’12, pp. 1:1–1:6. ACM (2012). doi: 10.1145/2379307.2379308

  48. Sarmento, L., Jijkuon, V., de Rijke, M., Oliveira, E.: “More like these”: Growing entity classes from seeds. In: Proceedings of the Sixteenth ACM Conference on Conference on Information and Knowledge Management, CIKM ’07, pp. 959–962. ACM (2007). doi: 10.1145/1321440.1321585

  49. Schuhmacher, M., Dietz, L., Paolo Ponzetto, S.: Ranking entities for web queries through text and knowledge. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, CIKM ’15, pp. 1461–1470. ACM (2015). doi: 10.1145/2806416.2806480

  50. Schuhmacher, M., Ponzetto, S.P.: Knowledge-based graph document modeling. In: Proceedings of the 7th ACM International Conference on Web Search and Data Mining, WSDM ’14, pp. 543–552 (2014). doi: 10.1145/2556195.2556250

  51. Sehgal, V., Getoor, L., Viechnicki, P.D.: Entity resolution in geospatial data integration. In: Proceedings of the 14th Annual ACM International Symposium on Advances in Geographic Information Systems, GIS ’06, pp. 83–90. ACM (2006). doi: 10.1145/1183471.1183486

  52. Tonon, A., Demartini, G., Cudré-Mauroux, P.: Combining inverted indices and structured search for ad-hoc object retrieval. In: Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’12, pp. 125–134. ACM (2012). doi: 10.1145/2348283.2348304

  53. Voskarides, N., Meij, E., Tsagkias, M., de Rijke, M., Weerkamp, W.: Learning to explain entity relationships in knowledge graphs. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 564–574. Association for Computational Linguistics (2015)

    Google Scholar 

  54. de Vries, A.P., Vercoustre, A.M., Thom, J.A., Craswell, N., Lalmas, M.: Overview of the INEX 2007 Entity Ranking track. In: Proceedings of the 6th Initiative on the Evaluation of XML Retrieval, INEX ’07, pp. 245–251. Springer (2008). doi: 10.1007/978-3-540-85902-4_22

    CrossRef  Google Scholar 

  55. Wang, C., Chakrabarti, K., He, Y., Ganjam, K., Chen, Z., Bernstein, P.A.: Concept expansion using web tables. In: Proceedings of the 24th International Conference on World Wide Web, WWW ’15, pp. 1198–1208. International World Wide Web Conferences Steering Committee (2015). doi: 10.1145/2736277.2741644

  56. Yang, L., Guo, Q., Song, Y., Meng, S., Shokouhi, M., McDonald, K., Croft, W.B.: Modeling user interests for zero-query ranking. In: Proceedings of the 38th European Conference on IR Research, ECIR ’16, pp. 171–184. Springer (2016). doi: 10.1007/978-3-319-30671-1_13

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. University of Stavanger, Stavanger, Norway

    Krisztian Balog

Authors
  1. Krisztian Balog
    View author publications

    You can also search for this author in PubMed Google Scholar

Rights and permissions

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this book are included in the book's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the book's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Reprints and Permissions

Copyright information

© 2018 The Editor(s) (if applicable) and the Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Balog, K. (2018). Semantically Enriched Models for Entity Ranking. In: Entity-Oriented Search. The Information Retrieval Series, vol 39. Springer, Cham. https://doi.org/10.1007/978-3-319-93935-3_4

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-319-93935-3_4

  • Published: 03 October 2018

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93933-9

  • Online ISBN: 978-3-319-93935-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • Your US state privacy rights
  • How we use cookies
  • Your privacy choices/Manage cookies
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.