Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Go to cart
Book cover

Entity-Oriented Search pp 57–99Cite as

  1. Home
  2. Entity-Oriented Search
  3. Chapter
Term-Based Models for Entity Ranking

Term-Based Models for Entity Ranking

  • Krisztian Balog4 
  • Chapter
  • Open Access
  • First Online: 03 October 2018
  • 19k Accesses

Part of the The Information Retrieval Series book series (INRE,volume 39)

Abstract

Ad hoc entity retrieval is the task of answering a free text query with a ranked list of entities. The main idea behind our approaches in this chapter can be summarized as follows: If textual representations can be constructed for entities, then the ranking of these representations (“entity descriptions”) becomes straightforward by building on traditional document retrieval techniques. Accordingly, the bulk of the work presented in this chapter revolves around assembling term-based entity representations from various sources, ranging from unstructured documents to structured knowledge bases. We also discuss evaluation methodology and standard test collections.

Download chapter PDF

References

  1. Balog, K., Azzopardi, L., de Rijke, M.: Formal models for expert finding in enterprise corpora. In: Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval, SIGIR ’06, pp. 43–50. ACM (2006). doi: 10.1145/1148170.1148181

  2. Balog, K., Azzopardi, L., de Rijke, M.: A language modeling framework for expert finding. Inf. Process. Manage. 45(1), 1–19 (2009a). doi: 10.1016/j.ipm.2008.06.003

    CrossRef  Google Scholar 

  3. Balog, K., Fang, Y., de Rijke, M., Serdyukov, P., Si, L.: Expertise retrieval. Found. Trends Inf. Retr. 6(2-3), 127–256 (2012a). doi: 10.1561/1500000024

    CrossRef  Google Scholar 

  4. Balog, K., Neumayer, R.: A test collection for entity search in DBpedia. In: Proceedings of the 36th international ACM SIGIR conference on Research and development in Information Retrieval, SIGIR ’13, pp. 737–740. ACM (2013). doi: 10.1145/2484028.2484165

  5. Balog, K., de Rijke, M.: Associating people and documents. In: Proceedings of the IR Research, 30th European Conference on Advances in Information Retrieval, ECIR’08, pp. 296–308. Springer (2008). doi: 10.1007/978-3-540-78646-7_28

    Google Scholar 

  6. Balog, K., Serdyukov, P., de Vries, A.P.: Overview of the TREC 2010 Entity track. In: Proceedings of the Nineteenth Text REtrieval Conference, TREC ’10. NIST (2011)

    Google Scholar 

  7. Balog, K., Serdyukov, P., de Vries, A.P.: Overview of the TREC 2011 Entity track. In: The Twentieth Text REtrieval Conference Proceedings, TREC ’11. NIST (2012b)

    Google Scholar 

  8. Balog, K., Soboroff, I., Thomas, P., Craswell, N., de Vries, A.P., Bailey, P.: Overview of the TREC 2008 Enterprise track. In: Proceedings of the 17th Text REtrieval Conference, TREC ’08. NIST (2009b)

    Google Scholar 

  9. Balog, K., de Vries, A.P., Serdyukov, P., Thomas, P., Westerveld, T.: Overview of the TREC 2009 Entity track. In: Proceedings of the Eighteenth Text REtrieval Conference, TREC ’09. NIST (2010)

    Google Scholar 

  10. Blanco, R., Halpin, H., Herzig, D.M., Mika, P., Pound, J., Thompson, H.S., Duc, T.T.: Entity search evaluation over structured web data. In: Proceedings of the 1st International Workshop on Entity-Oriented Search, EOS ’11, pp. 65–71 (2011a)

    Google Scholar 

  11. Blanco, R., Halpin, H., Herzig, D.M., Mika, P., Pound, J., Thompson, H.S., Tran, T.: Repeatable and reliable semantic search evaluation. Web Semant. 21, 14–29 (2013)

    CrossRef  Google Scholar 

  12. Blanco, R., Mika, P., Vigna, S.: Effective and efficient entity search in RDF data. In: Proceedings of the 10th International Conference on The Semantic Web, ISWC ’11, pp. 83–97. Springer (2011b). doi: 10.1007/978-3-642-25073-6_6

    CrossRef  Google Scholar 

  13. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). doi: 10.1023/A:1010933404324

    CrossRef  Google Scholar 

  14. Broder, A., Gabrilovich, E., Josifovski, V., Mavromatis, G., Metzler, D., Wang, J.: Exploiting site-level information to improve web search. In: Proceedings of the 19th ACM International Conference on Information and Knowledge Management, CIKM ’10, pp. 1393–1396. ACM (2010). doi: 10.1145/1871437.1871630

  15. Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., Hullender, G.: Learning to rank using gradient descent. In: Proceedings of the 22nd International Conference on Machine Learning, ICML ’05, pp. 89–96. ACM (2005). doi: 10.1145/1102351.1102363

  16. Burges, C.J.C., Ragno, R., Le, Q.V.: Learning to rank with nonsmooth cost functions. In: Proceedings of the 19th International Conference on Neural Information Processing Systems, NIPS ’06, pp. 193–200. MIT Press (2006)

    Google Scholar 

  17. Cao, Z., Qin, T., Liu, T.Y., Tsai, M.F., Li, H.: Learning to rank: From pairwise approach to listwise approach. In: Proceedings of the 24th International Conference on Machine Learning, ICML ’07, pp. 129–136. ACM (2007). doi: 10.1145/1273496.1273513

  18. Chakrabarti, S., Kasturi, S., Balakrishnan, B., Ramakrishnan, G., Saraf, R.: Compressed data structures for annotated web search. In: Proceedings of the 21st International Conference on World Wide Web, WWW ’12, pp. 121–130. ACM (2012). doi: 10.1145/2187836.2187854

  19. Chakrabarti, S., Puniyani, K., Das, S.: Optimizing scoring functions and indexes for proximity search in type-annotated corpora. In: Proceedings of the 15th International Conference on World Wide Web, WWW ’06, pp. 717–726. ACM (2006). doi: 10.1145/1135777.1135882

  20. Chapelle, O., Chang, Y.: Yahoo! Learning to Rank Challenge overview. In: Proceedings of the Yahoo! Learning to Rank Challenge, pp. 1–24 (2011)

    Google Scholar 

  21. Chen, J., Xiong, C., Callan, J.: An empirical study of learning to rank for entity search. In: Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’16, pp. 737–740. ACM (2016). doi: 10.1145/2911451.2914725

  22. Cheng, T., Chang, K.C.C.: Beyond pages: Supporting efficient, scalable entity search with dual-inversion index. In: Proceedings of the 13th International Conference on Extending Database Technology, EDBT ’10, pp. 15–26. ACM (2010). doi: 10.1145/1739041.1739047

  23. Cimiano, P., Lopez, V., Unger, C., Cabrio, E., Ngonga Ngomo, A.C., Walter, S.: Multilingual question answering over Linked Data (QALD-3): Lab overview. In: Information Access Evaluation. Multilinguality, Multimodality, and Visualization: 4th International Conference of the CLEF Initiative, CLEF 2013, Valencia, Spain, September 23–26, 2013. Proceedings, pp. 321–332. Springer (2013). doi: 10.1007/978-3-642-40802-1_30

    Google Scholar 

  24. Conrad, J.G., Utt, M.H.: A system for discovering relationships by feature extraction from text databases. In: Proceedings of the 17th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’94, pp. 260–270. Springer (1994)

    Google Scholar 

  25. Craswell, N., de Vries, A.P., Soboroff, I.: Overview of the TREC-2005 Enterprise track. In: Proceedings of the 14th Text REtrieval Conference, TREC ’05. NIST (2006)

    Google Scholar 

  26. Croft, B., Metzler, D., Strohman, T.: Search Engines: Information Retrieval in Practice. 1st edn. Addison-Wesley Publishing Co. (2009)

    Google Scholar 

  27. Dalton, J., Huston, S.: Semantic entity retrieval using web queries over structured RDF data. In: Proceedings of the 3rd International Semantic Search Workshop, SEMSEARCH ’10 (2010)

    Google Scholar 

  28. Dalvi, N., Kumar, R., Soliman, M.: Automatic wrappers for large scale web extraction. Proc. VLDB Endow. 4(4), 219–230 (2011). doi: 10.14778/1938545.1938547

    CrossRef  Google Scholar 

  29. Demartini, G., Iofciu, T., de Vries, A.: Overview of the INEX 2009 Entity Ranking track. In: Geva, S., Kamps, J., Trotman, A. (eds.) Focused Retrieval and Evaluation, Lecture Notes in Computer Science, vol. 6203, pp. 254–264. Springer (2010). doi: 10.1007/978-3-642-14556-8_26

    CrossRef  Google Scholar 

  30. Demartini, G., de Vries, A.P., Iofciu, T., Zhu, J.: Overview of the INEX 2008 Entity Ranking track. In: Advances in Focused Retrieval: 7th International Workshop of the Initiative for the Evaluation of XML Retrieval (INEX 2008), pp. 243–252 (2009). doi: 10.1007/978-3-642-03761-0_25

    Google Scholar 

  31. Firth, J.R.: A synopsis of linguistic theory 1930-55. Studies in Linguistic Analysis (special volume of the Philological Society) 1952-59, 1–32 (1957)

    Google Scholar 

  32. Freund, Y., Iyer, R., Schapire, R.E., Singer, Y.: An efficient boosting algorithm for combining preferences. J. Mach. Learn. Res. 4, 933–969 (2003)

    MathSciNet  MATH  Google Scholar 

  33. Friedman, J.H.: Greedy function approximation: A gradient boosting machine. Annals of Statistics 29, 1189–1232 (2000)

    CrossRef  MathSciNet  Google Scholar 

  34. Graus, D., Tsagkias, M., Weerkamp, W., Meij, E., de Rijke, M.: Dynamic collective entity representations for entity ranking. In: Proceedings of the Ninth ACM International Conference on Web Search and Data Mining, WSDM ’16, pp. 595–604. ACM (2016). doi: 10.1145/2835776.2835819

  35. Gurajada, S., Kamps, J., Mishra, A., Schenkel, R., Theobald, M., Wang, Q.: Overview of the INEX 2013 Linked Data track. In: CLEF 2013 Evaluation Labs and Workshop, Online Working Notes (2013)

    Google Scholar 

  36. Halpin, H., Herzig, D.M., Mika, P., Blanco, R., Pound, J., Thompson, H.S., Tran, D.T.: Evaluating ad-hoc object retrieval. In: Proceedings of the International Workshop on Evaluation of Semantic Technologies, IWEST ’10 (2010)

    Google Scholar 

  37. Hasibi, F., Balog, K., Bratsberg, S.E.: Exploiting entity linking in queries for entity retrieval. In: Proceedings of the 2016 ACM on International Conference on the Theory of Information Retrieval, ICTIR ’16, pp. 209–218. ACM (2016). doi: 10.1145/2970398.2970406

  38. Hasibi, F., Nikolaev, F., Xiong, C., Balog, K., Bratsberg, S.E., Kotov, A., Callan, J.: DBpedia-Entity v2: A test collection for entity search. In: Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’17, pp. 1265–1268. ACM (2017). doi: 10.1145/3077136.3080751

  39. Joachims, T.: Optimizing search engines using clickthrough data. In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’02, pp. 133–142. ACM (2002). doi: 10.1145/775047.775067

  40. Kim, J., Xue, X., Croft, W.B.: A probabilistic retrieval model for semistructured data. In: Proceedings of the 31th European Conference on IR Research on Advances in Information Retrieval, pp. 228–239. Springer (2009). doi: 10.1007/978-3-642-00958-7_22

    Google Scholar 

  41. Laender, A.H.F., Ribeiro-Neto, B.A., da Silva, A.S., Teixeira, J.S.: A brief survey of web data extraction tools. SIGMOD Rec. 31(2), 84–93 (2002). doi: 10.1145/565117.565137

    CrossRef  Google Scholar 

  42. Liu, T.Y.: Learning to Rank for Information Retrieval. Springer (2011)

    Google Scholar 

  43. Lopez, V., Unger, C., Cimiano, P., Motta, E.: Evaluating question answering over Linked Data. Web Semantics: Science, Services and Agents on the World Wide Web 21, 3–13 (2013). doi: 10.1016/j.websem.2013.05.006

    CrossRef  Google Scholar 

  44. Lu, C., Lam, W., Liao, Y.: Entity retrieval via entity factoid hierarchy. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), ACL ’15, pp. 514–523. Association for Computational Linguistics (2015). doi: 10.3115/v1/P15-1050

  45. Lu, W., Robertson, S., MacFarlane, A.: Field-weighted XML retrieval based on BM25. In: Proceedings of the 4th International Conference on Initiative for the Evaluation of XML Retrieval, INEX ’05, pp. 161–171 (2006). doi: 10.1007/11766278_12

  46. Lv, Y., Zhai, C.: Positional language models for information retrieval. In: Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’09, pp. 299–306. ACM (2009). doi: 10.1145/1571941.1571994

  47. Macdonald, C., Ounis, I.: Voting for candidates: Adapting data fusion techniques for an expert search task. In: Proceedings of the 15th ACM international conference on Information and knowledge management, CIKM ’06, pp. 387–396. ACM (2006). doi: 10.1145/1183614.1183671

  48. Macdonald, C., Santos, R.L., Ounis, I.: The whens and hows of learning to rank for web search. Inf. Retr. 16(5), 584–628 (2013). doi: 10.1007/s10791-012-9209-9

    CrossRef  Google Scholar 

  49. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press (2008)

    Google Scholar 

  50. Meij, E., Weerkamp, W., de Rijke, M.: Adding semantics to microblog posts. In: Proceedings of the Fifth ACM International Conference on Web Search and Data Mining, WSDM ’12, pp. 563–572. ACM (2012). doi: 10.1145/2124295.2124364

  51. Metzler, D.: A Feature-Centric View of Information Retrieval. Springer (2011)

    Google Scholar 

  52. Metzler, D., Croft, W.B.: A Markov random field model for term dependencies. In: Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’05, pp. 472–479. ACM (2005). doi: 10.1145/1076034.1076115

  53. Metzler, D., Croft, W.B.: Linear feature-based models for information retrieval. Inf. Retr. 10(3), 257–274 (2007). doi: 10.1007/s10791-006-9019-z

    CrossRef  Google Scholar 

  54. Neumayer, R., Balog, K., Nørvåg, K.: On the modeling of entities for ad-hoc entity search in the Web of Data. In: Proceedings of the 34th European conference on Advances in Information Retrieval, ECIR ’12, pp. 133–145. Springer (2012a). doi: 10.1007/978-3-642-28997-2_12

    Google Scholar 

  55. Neumayer, R., Balog, K., Nørvåg, K.: When simple is (more than) good enough: Effective semantic search with (almost) no semantics. In: Proceedings of the 34th European conference on Advances in Information Retrieval, ECIR ’12, pp. 540–543. Springer (2012b). doi: 10.1007/978-3-642-28997-2_59

    Google Scholar 

  56. Nikolaev, F., Kotov, A., Zhiltsov, N.: Parameterized fielded term dependence models for ad-hoc entity retrieval from knowledge graph. In: Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’16, pp. 435–444. ACM (2016). doi: 10.1145/2911451.2911545

  57. Ogilvie, P., Callan, J.: Combining document representations for known-item search. In: Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’03, pp. 143–150. ACM (2003). doi: 10.1145/860435.860463

  58. Ogilvie, P., Callan, J.: Hierarchical language models for XML component retrieval. In: Fuhr, N., Lalmas, M., Malik, S., Szlávik, Z. (eds.) Advances in XML Information Retrieval, Third International Workshop of the Initiative for the Evaluation of XML Retrieval, INEX 2004, Lecture Notes in Computer Science, vol. 3493, pp. 224–237. Springer (2005). doi: 10.1007/11424550_18

    CrossRef  Google Scholar 

  59. Pérez-Agüera, J.R., Arroyo, J., Greenberg, J., Iglesias, J.P., Fresno, V.: Using BM25F for semantic search. In: Proceedings of the 3rd International Semantic Search Workshop, SEMSEARCH ’10. ACM (2010). doi: 10.1145/1863879.1863881

  60. Petkova, D., Croft, W.B.: Proximity-based document representation for named entity retrieval. In: Proceedings of the sixteenth ACM conference on Conference on information and knowledge management, CIKM ’07, pp. 731–740. ACM (2007). doi: 10.1145/1321440.1321542

  61. Qin, T., Liu, T.Y., Xu, J., Li, H.: LETOR: A benchmark collection for research on learning to rank for information retrieval. Inf. Retr. 13(4), 346–374 (2010). doi: 10.1007/s10791-009-9123-y

    CrossRef  Google Scholar 

  62. Raghavan, H., Allan, J., Mccallum, A.: An exploration of entity models, collective classification and relation description. In: KDD Workshop on Link Analysis and Group Detection, LinkKDD ’04, pp. 1–10 (2004)

    Google Scholar 

  63. Robertson, S., Zaragoza, H.: The probabilistic relevance framework: BM25 and beyond. Found. Trends Inf. Retr. 3(4), 333–389 (2009). doi: 10.1561/1500000019

    CrossRef  Google Scholar 

  64. Robertson, S., Zaragoza, H., Taylor, M.: Simple BM25 extension to multiple weighted fields. In: Proceedings of the 13th ACM conference on Information and knowledge management, CIKM ’04, pp. 42–49 (2004). doi: 10.1145/1031171.1031181

  65. Robertson, S.E.: The probability ranking principle in information retrieval. Journal of Documentation 33, 294–304 (1977)

    CrossRef  Google Scholar 

  66. Sanderson, M.: Test collection based evaluation of information retrieval systems. Found. Trends Inf. Retr. 4(4), 247–375 (2010). doi: 10.1561/1500000009

    CrossRef  Google Scholar 

  67. Sandhaus, E.: The New York Times Annotated Corpus. Tech. rep. (2008)

    Google Scholar 

  68. Schuhmacher, M., Dietz, L., Paolo Ponzetto, S.: Ranking entities for web queries through text and knowledge. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, CIKM ’15, pp. 1461–1470. ACM (2015). doi: 10.1145/2806416.2806480

  69. Unger, C., Forascu, C., Lopez, V., Ngonga Ngomo, A.C., Cabrio, E., Cimiano, P., Walter, S.: Question answering over Linked Data (QALD-4). In: Cappellato, L., Ferro, N., Halvey, M., Kraaij, W. (eds.) Working Notes for CLEF 2014 Conference (2014)

    Google Scholar 

  70. Unger, C., Forascu, C., Lopez, V., Ngonga Ngomo, A.C., Cabrio, E., Cimiano, P., Walter, S.: Question answering over Linked Data (QALD-5). In: Cappellato, L., Ferro, N., Jones, G., San Juan, E. (eds.) Working Notes of CLEF 2015 - Conference and Labs of the Evaluation forum (2015)

    Google Scholar 

  71. Unger, C., Ngomo, A.C.N., Cabrio, E.: 6th Open Challenge on Question Answering over Linked Data (QALD-6). In: Sack, H., Dietze, S., Tordai, A., Lange, C. (eds.) Semantic Web Challenges: Third SemWebEval Challenge at ESWC 2016, Heraklion, Crete, Greece, May 29 - June 2, 2016, Revised Selected Papers, pp. 171–177. Springer (2016). doi: 10.1007/978-3-319-46565-4_13

    CrossRef  Google Scholar 

  72. Voorhees, E.M., Harman, D.K.: TREC: Experiment and Evaluation in Information Retrieval. The MIT Press (2005)

    Google Scholar 

  73. de Vries, A.P., Vercoustre, A.M., Thom, J.A., Craswell, N., Lalmas, M.: Overview of the INEX 2007 Entity Ranking track. In: Proceedings of the 6th Initiative on the Evaluation of XML Retrieval, INEX ’07, pp. 245–251. Springer (2008). doi: 10.1007/978-3-540-85902-4_22

    CrossRef  Google Scholar 

  74. Wang, Q., Kamps, J., Camps, G.R., Marx, M., Schuth, A., Theobald, M., Gurajada, S., Mishra, A.: Overview of the INEX 2012 Linked Data track. In: CLEF 2012 Evaluation Labs and Workshop, Online Working Notes (2012)

    Google Scholar 

  75. Wu, Q., Burges, C.J., Svore, K.M., Gao, J.: Adapting boosting for information retrieval measures. Inf. Retr. 13(3), 254–270 (2010). doi: 10.1007/s10791-009-9112-1

    CrossRef  Google Scholar 

  76. Xu, J., Li, H.: AdaRank: A boosting algorithm for information retrieval. In: Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’07, pp. 391–398. ACM (2007). doi: 10.1145/1277741.1277809

  77. Zhai, C., Lafferty, J.: A study of smoothing methods for language models applied to information retrieval. ACM Trans. Inf. Syst. 22(2), 179–214 (2004). doi: 10.1145/984321.984322

    CrossRef  Google Scholar 

  78. Zhai, C., Massung, S.: Text Data Management and Analysis: A Practical Introduction to Information Retrieval and Text Mining. ACM and Morgan & Claypool (2016)

    Google Scholar 

  79. Zheng, Z., Zha, H., Zhang, T., Chapelle, O., Chen, K., Sun, G.: A general boosting method and its application to learning ranking functions for web search. In: Proceedings of the 20th International Conference on Neural Information Processing Systems, NIPS ’07, pp. 1697–1704. Curran Associates Inc. (2007)

    Google Scholar 

  80. Zhiltsov, N., Agichtein, E.: Improving entity search over Linked Data by modeling latent semantics. In: Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, CIKM ’13, pp. 1253–1256. ACM (2013). doi: 10.1145/2505515.2507868

  81. Zhiltsov, N., Kotov, A., Nikolaev, F.: Fielded sequential dependence model for ad-hoc entity retrieval in the Web of Data. In: Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’15, pp. 253–262. ACM (2015). doi: 10.1145/2766462.2767756

Download references

Author information

Authors and Affiliations

  1. University of Stavanger, Stavanger, Norway

    Krisztian Balog

Authors
  1. Krisztian Balog
    View author publications

    You can also search for this author in PubMed Google Scholar

Rights and permissions

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this book are included in the book's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the book's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Reprints and Permissions

Copyright information

© 2018 The Editor(s) (if applicable) and the Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Balog, K. (2018). Term-Based Models for Entity Ranking. In: Entity-Oriented Search. The Information Retrieval Series, vol 39. Springer, Cham. https://doi.org/10.1007/978-3-319-93935-3_3

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-319-93935-3_3

  • Published: 03 October 2018

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93933-9

  • Online ISBN: 978-3-319-93935-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature