The Role of Virtual Reality and Biomechanical Technologies in Stroke Rehabilitation

  • Joanna BartnickaEmail author
  • Cristina Herrera
  • Robert Michnik
  • Esteban E. Pavan
  • Paolo Vercesi
  • Enrique Varela-Donoso
  • David Garrido
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 785)


The aim of this paper is to present a spectrum of virtual reality and biomechanical technologies that can be potentially used in supporting the rehabilitation of people after stroke, in both clinical and home conditions. The methodology was based on a systematic review of up-to-date, published research works available in Elsevier Science Direct database including peer-reviewed journal articles. As a result, trends, possible promising solutions and gaps in the area of innovative rehabilitation tools for post-stroke patients were recognized and discussed. Particularly, the new knowledge and good practices focused on the applicability of biomechanical systems and Virtual Reality (VR) technologies in stroke treatment were searched, which is the subject of an educational and international Erasmus+ project entitled “Development of innovative training contents based on the applicability of virtual reality in the field of stroke rehabilitation- Brain4Train”. The training content, which is one of the project outcomes, will be provided to all interested professionals engaged in post-stroke patients’ rehabilitation, in order to make them capable to develop customized rehabilitation programs based on techno-innovative rehabilitation models.


Biomechanics Virtual reality Stroke rehabilitation Systematic review International e-learning course Brain4Train 



This work has been done under the project “Development of innovative Training contents based on the applicability of Virtual Reality in the field of Stroke Rehabilitation”, contract number 2017-1-PL01-KA202-038370, a project funded with support from the European Commission. This communication reflects the views only of the author, and the Commission cannot be held responsible for any use which may be made of the information contained therein.


  1. 1.
    Barker-Collo, S.L., Feigin, V.L., Lawes, C.M., Parag, V., Senior, H., Rodgers, A.: Reducing attention deficits after stroke using attention process training. Stroke 40, 3293–3298 (2009)CrossRefGoogle Scholar
  2. 2.
    Andrade, L.M., Costa, M.F.M., Caetano, J.A., et al.: A problemática do cuidador familiar do portador de Acidente Vascular Encefálico. Rev. Esc. Enferm. US 43, 37–43 (2009)CrossRefGoogle Scholar
  3. 3.
    Lotufo, P.A., Bensenor, I.M.: Improving WHO STEPS stroke in Brasil. Lancet Neurol. 6, 387–388 (2007)CrossRefGoogle Scholar
  4. 4.
    Trombetta, M., Paula, P., Henrique, B., Rogofski Brum, M., Colussi, E.L., Bertoletti De Marchi, A.C., Rieder, R.: Motion Rehab AVE 3D: A VR-based exer game for post-stroke rehabilitation. Comput. Methods Programs Biomed. 151, 15–20 (2017)CrossRefGoogle Scholar
  5. 5.
    Barbosa Filho, D.J., Barros, C.T.L., Silva, G.A., Melo, J.G., Santos, E.F.S.: Recuperação após acidente vascular cerebral em adulto jovem submetido à fisioterapia alternative. Revista Interfaces: Saúde, Humanas e Tecnologia, 2(6) (2015)Google Scholar
  6. 6.
    Truelsen, T., Piechowski-Jozwiak, B., Bonita, R., et al.: Stroke incidence and prevalence in Europe: a review of available data. Eur. J. Neurol. 13, 581–598 (2006)CrossRefGoogle Scholar
  7. 7.
    World Population Prospects.: Key findings & advance tables. Department of Economic and Social Affairs Population Division. United NationsGoogle Scholar
  8. 8.
    fttps:// (2017)Google Scholar
  9. 9.
    Zinn, S., Bosworth, H.B., Hoenig, H.M., Swartzwelder, H.S.: Executive function deficits in acute stroke. Arch. Phys. Med. Rehabil. 88, 173–180 (2007)CrossRefGoogle Scholar
  10. 10.
    Conner, L.T., Maeir, A.: Putting executive performance in a theoretical context. OTJR Occup. Particip. Health 31, 3–7 (2011)CrossRefGoogle Scholar
  11. 11.
    Josman, N., Kizony, R., Hof, E., Goldenberg, K., Weiss, L., Klinge, E.: Using the virtual action planning-supermarket for evaluating executive functions in people with stroke. J. Stroke Cerebrovasc. Dis. 23(5), 879–887 (2014)CrossRefGoogle Scholar
  12. 12.
    Huang, X., Naghdy, F., Naghdy, G., Du, H., Todd, C.: Combined effects of adaptive control and virtual reality on robot-assisted fine hand motion rehabilitation in chronic stroke patients: a case study. J. Stroke Cerebrovasc. Dis. 27(1), 221–228 (2018)CrossRefGoogle Scholar
  13. 13.
    Hong, K.-S., Bang, O.Y., Kang, D.-W., Yu, K.-H., Bae, H.-J., Lee, J.S., Heo, J.H., Kwon, S.U., Oh, C.W., Lee, B.-C., Kim, J.S., Yoon, B.-W.: Stroke statistics in korea: part I. Epidemiology and risk factors: a report from the korean stroke society and clinical research center for stroke. J. Stroke 15(1), 2–20 (2013)CrossRefGoogle Scholar
  14. 14.
    Lee, S.H., Lee, J.-Y., Kim, M.-Y., Jeon, Y.-J., Kim, S., Shin, J.-H.: Virtual reality rehabilitation with functional electrical stimulation improves upper extremity function in patients with chronic stroke: a pilot randomized controlled study. Arch. Phys. Med. Rehabil. (2018, in press). Scholar
  15. 15.
    Cho, S., Ku, J., Cho, Y.K., Kim, I.Y., Kang, Y.J., Jang, D.P., Kim, S.I.: Development of virtual reality proprioceptive rehabilitation system for stroke patients. Comput. Methods Programs Biomed. 113, 258–265 (2014)CrossRefGoogle Scholar
  16. 16.
    Lee, S.J., Chun, M.H.: Combination transcranial direct current stimulation and virtual reality therapy for upper extremity training in patients with subacute stroke. Arch. Phys. Med. Rehabil. 95(3), 431–438 (2014)CrossRefGoogle Scholar
  17. 17.
    Lawrence, E.S., Coshall, C., Dundas, R., Stewart, J., Rudd, A.G., Howard, R., Wolfe, C.D.: Estimates of the prevalence of acute stroke impairments and disability in a multiethnic population. Stroke 32, 1279–1284 (2001)CrossRefGoogle Scholar
  18. 18.
    Broeks, G.L.G., Rumping, K., Prevo, A.J.: The long-term outcome of arm function after stroke: results of a follow-up study. Disabil. Rehabil. 21, 357–364 (1999)CrossRefGoogle Scholar
  19. 19.
    Shina, J.-H., Park, S.B., Jang, S.H.: Effects of game-based virtual reality on health-related quality of life in chronic stroke patients: a randomized, controlled study. Comput. Biol. Med. 63, 92–98 (2015)CrossRefGoogle Scholar
  20. 20.
    Mazzoleni, S., Turchetti, G., Palla, I., Posteraro, F., Dario, P.: Acceptability of ro-botic technology in neuro-rehabilitation: preliminary results on chroni stroke patients. Comput. Methods Programs Biomed. 116(2), 116–122 (2014)CrossRefGoogle Scholar
  21. 21.
    Park, D.-S., Lee, D.-G., Lee, K., Lee, G.C.H.: Effects of virtual reality training using xbox kinect on motor function in stroke survivors: a preliminary study. J. Stroke Cerebrovasc. Dis. 26(10), 2313–2319 (2017)CrossRefGoogle Scholar
  22. 22.
    Dos Santos, L.R., Carregosa, A.A., Masruha, M.R., Dos Santos, P.A., Da Silveira Coelho, M.L., Ferraz, D.D., Da Silva Ribeiro, N.M.: The use of nintendo wii in the rehabilitation of post-stroke patients: a systematic review. J. Stroke Cerebrovasc. Dis. 24(10), 2298–2305 (2015)CrossRefGoogle Scholar
  23. 23.
    Hung, J.W., Yu, M.Y., Chang, K.C., Lee, H.C., Hsieh, Y.W., Chen, P.C.: Feasibility of using tetrax biofeedback video games for balance training in patients with chronic hemiplegic stroke. PM&R 8, 962–970 (2016)CrossRefGoogle Scholar
  24. 24.
    Joo, L.Y., Tjan, S.Y., Donald, X., Ernest, T., Pei, F.C., Christopher, W.K.K., Kong, K.H.: A feasibility study using interactive commercial off-the-shelf computer gaming in upper limb rehabilitation in patients after stroke. J. Rehabil. Med. 42, 437–441 (2010)CrossRefGoogle Scholar
  25. 25.
    Chen, B., Ma, H., Qin, L.-Y., Gao, F., Chan, K.-M., Law, S.-W., Qin, L., Liao, W.-H.: Recent developments and challenges of lower extremity exoskeletons. J. Orthop. Transl. 5, 26–37 (2016)Google Scholar
  26. 26.
    Lee, C.-H., Choi, J., Lee, H., Kim, J., Lee, K.-M., Bang, Y.-B.: Exoskeletal master device for dual arm robot teaching. Mechatronics 43, 76–85 (2017)CrossRefGoogle Scholar
  27. 27.
    Calabro, R.S., Russo, M., Naro, A., Milardi, D., Balletta, T., Leo, A., Filoni, S., Bramanti, P.: Who may benefit from armeo power treatment? A neurophysiological approach to predict neurorehabilitation outcomes. PM&R 8(10), 971–978 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Joanna Bartnicka
    • 1
    Email author
  • Cristina Herrera
    • 2
  • Robert Michnik
    • 1
  • Esteban E. Pavan
    • 3
  • Paolo Vercesi
    • 3
  • Enrique Varela-Donoso
    • 4
  • David Garrido
    • 2
  1. 1.Institute of Production EngineeringSilesian University of TechnologyGliwicePoland
  2. 2.Instituto de Biomecánica de ValenciaValenciaSpain
  3. 3.Fondazione Politecnico di MilanoMilanItaly
  4. 4.European Society of Physical and Rehabilitation Medicine, DelegateComplutense UniversityMadridSpain

Personalised recommendations