Skip to main content

Crystallization and Glass-Ceramics

  • Chapter
Springer Handbook of Glass

Part of the book series: Springer Handbooks ((SHB))

Abstract

Glass-ceramics are innovative technological materials made up of crystals dispersed in a glass matrix. This dual feature enables the combination of the advantages of glass, mostly ease of shaping/forming, with the specific properties of crystalline phases. Since their discovery in the 1950s, numerous studies have been devoted to glass crystallization mechanisms. Such an understanding is of primary importance to further design glass-ceramics with tailored properties that are closely related to their microstructure. This chapter will thus start with a description of the different nucleation and growth processes. Some practical examples will be provided to illustrate the particular interest of nucleating agents and phase separation in order to master nucleation and growth processes. A brief overview of the complementary characterization techniques used to finely describe the multiscale structure of these glass-ceramic materials will then be presented. Finally, the large range of accessible glass-forming compositions and microstructures will be illustrated by a variety of technological materials combining mechanical, thermal, optical, energetic, and bioactive properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W. Höland, G.H. Beall: Glass-Ceramic Technology, 2nd edn. (Wiley, Hoboken 2012)

    Book  Google Scholar 

  2. D.R. Neuville, L. Cormier, D. Caurant, L. Montagne (Eds.): From Glass to Crystal – Nucleation, Growth and Phase Separation: From Research to Applications (EDP-Sciences, Les Ulis 2017)

    Google Scholar 

  3. M. Montazerian, S.P. Singh, E.D. Zanotto: An analysis of glass-ceramic research and commercialiation, Am. Ceram. Soc. Bull. 94, 30–35 (2015)

    CAS  Google Scholar 

  4. R.J. Kirkpatrick: Theory of nucleation in silicate melts, Am. Mineral. 68, 66–77 (1983)

    CAS  Google Scholar 

  5. J.W. Gibbs: On the equilibrium of heterogeneous substances, Trans. Conn. Acad. Arts Sci. 3, 108–248 (1876), (1874–1878)

    Google Scholar 

  6. M. Volmer, A. Weber: Keimbildung in übersättigten Gebilden, Z. Phys. Chem. 119, 277 (1926)

    CAS  Google Scholar 

  7. R. Becker, W. Döring: Kinetische Behandlung der Keimbildung in übersättigten Dämpfen, Ann. Phys. 24, 719–752 (1935)

    Article  CAS  Google Scholar 

  8. E.D. Zanotto, V.M. Fokin: Recent studies of internal and surface nucleation in silicate glasses, Philos. Trans. R. Soc. A 361, 591–612 (2003)

    Article  CAS  Google Scholar 

  9. Y. Takahashi, M. Osada, H. Masai, T. Fujiwara: Transmission electron microscopy and in situ Raman studies of glassy sanbornite: An insight into nucleation trend and its relation to structural variation, J. Appl. Phys. 108, 063507 (2010)

    Article  CAS  Google Scholar 

  10. J. Deubener, R. Bruckner, M. Sternitzke: Induction time analysis of nucleation and crystal growth in di- and metasilicate glasses, J. Non-Cryst. Solids 163, 1–12 (1993)

    Article  CAS  Google Scholar 

  11. P.C. Soares Jr, E.D. Zanotto, V.M. Fokin, H. Jain: TEM and XRD study of early crystallization of lithium disilicate glasses, J. Non-Cryst. Solids 331, 217–227 (2003)

    Article  CAS  Google Scholar 

  12. V.M. Fokin, E.D. Zanotto, J.W.P. Schmelzer: Homogeneous nucleation versus glass transition temperature of silicate glasses, J. Non-Cryst. Solids 321, 52–65 (2003)

    Article  CAS  Google Scholar 

  13. Y. Takahashi, H. Masai, T. Fujiara: Nucleation tendency and crystallizing phase in silicate glasses: A structural aspect, Appl. Phys. Lett. 95, 071904 (2009)

    Article  CAS  Google Scholar 

  14. E.D. Zanotto: Isothermal and adiabatic nucleation in glass, J. Non-Cryst. Solids 89, 361–370 (1987)

    Article  CAS  Google Scholar 

  15. E.D. Zanotto: Glass crystallization research – A 36-year retrospective. Part I, fundamental studies, Int. J. Appl. Glass Sci. 4, 105–116 (2013)

    Article  CAS  Google Scholar 

  16. J. Schneider, V.R. Mastelaro, H. Panepucci, E.D. Zanotto: 29Si MAS-NMR studies of Qn structural units in metasilicate glasses and their nucleating ability, J. Non-Cryst. Solids 273, 8–18 (2000)

    Article  CAS  Google Scholar 

  17. V.R. Mastelaro, E.D. Zanotto, N. Lequeux, R. Cortes: Relationship between short-range order and ease of nucleation in Na2Ca2Si3O9, CaSiO3 and PbSiO3 glasses, J. Non-Cryst. Solids 262, 191–199 (2000)

    Article  CAS  Google Scholar 

  18. J.G. Longstaffe, U. Werner-Zwanziger, J.F. Schneider, M.L.F. Nascimento, E.D. Zanotto, J.W. Zwanziger: Intermediate-range order of alkali disilicate glasses and its relation to the devitrification mechanism, J. Phys. Chem. C 112, 6151–6159 (2008)

    Article  CAS  Google Scholar 

  19. B. Chen, U. Werner-Zwanziger, M.L.F. Nascimento, L. Ghussn, E.D. Zanotto, J.W. Zwanziger: Structural similarity on multiple length scales and its relation to devitrification mechanism: A solid-state NMR study of alkali diborate glasses and crystals, J. Phys. Chem. C 113, 20725–20732 (2009)

    Article  CAS  Google Scholar 

  20. B. Chen, U. Werner-Zwanziger, J.W. Zwanziger, M.L.F. Nascimento, L. Ghussn, E.D. Zanotto: Correlation of network structure with devitrification mechanism in lithium and sodium diborate glasses, J. Non-Cryst. Solids 356, 2641–2644 (2010)

    Article  CAS  Google Scholar 

  21. D. Kashchiev: Solution of the non-steady state problem in nucleation kinetics, Surf. Sci. 14, 209–220 (1969)

    Article  Google Scholar 

  22. V.M. Fokin, E.D. Zanotto: Continuous compositional changes of crystal and liquid during crystallization of a sodium calcium silicate glass, J. Non-Cryst. Solids 353, 2459–2468 (2007)

    Article  CAS  Google Scholar 

  23. S. Sen, T. Mukerji: A generalized classical nucleation theory for rough interfaces: Application in the analysis of homogenous nucleation in silicate liquids, J. Non-Cryst. Solids 246, 229–239 (1999)

    Article  CAS  Google Scholar 

  24. M. Roskosz, M.J. Toplis, P. Beson, P. Richet: Nucleation mechanisms: a crystal-chemical investigation of phase forming in highly supercooled aluminosilicate liquids, J. Non-Cryst. Solids 351, 1266–1282 (2005)

    Article  CAS  Google Scholar 

  25. M. Roskosz, M.J. Toplis, P. Richet: Experimental determination of crystal growth rates in highly supercooled aluminosilicate liquids: implications for rate-controlling processes, Am. Mineral. 90, 1146–1156 (2005)

    Article  CAS  Google Scholar 

  26. G. Gruener, P. Odier, D. De Sousa Meneses, P. Florian, P. Richet: Bulk and local dynamics in glass-forming liquids: a viscosity, electrical conductivity, and NMR study of aluminosilicate melts, Phys. Rev. B 64, 24206–24201–24205 (2001)

    Article  CAS  Google Scholar 

  27. T. Kawasaki, H. Tanaka: Formation of a crystal nucleus from liquid, Proc. Natl. Acad. Sci. USA 107, 14036–14041 (2010)

    Article  CAS  Google Scholar 

  28. O. Dargaud, L. Cormier, N. Menguy, G. Patriarche, G. Calas: Mesoscopic scale description of nucleation processes in glasses, Appl. Phys. Lett. 99, 021904 (2011), https://doi.org/10.1063/1.3610557

    Article  CAS  Google Scholar 

  29. O. Dargaud, L. Cormier, N. Menguy, G. Patriarche: Multi-scale structuration of glasses: Observations of phase separation and nanoscale heterogeneities in glasses by Z-contrast scanning electron transmission microscopy, J. Non-Cryst. Solids 358, 1257–1262 (2012)

    Article  CAS  Google Scholar 

  30. J. Russo, H. Tanaka: The microscopic pathway to crystallization in supercooled liquids, Sci. Rep. 2, 505 (2012)

    Article  CAS  Google Scholar 

  31. J. Russo, H. Tanaka: Nonclassical pathways of crystallization in colloidal systems, MRS Bulletin 41, 369–374 (2016)

    Article  CAS  Google Scholar 

  32. W. Ostwald: Studien über die Bildung und Umwandlung fester Körper, Z. Phys. Chem. 22, 289–330 (1897)

    CAS  Google Scholar 

  33. S.Y. Chung, Y.M. Kim, J.G. Kim, Y.J. Kim: Multiphase transformation and Ostwald's rule of stages during crystallization of a metal phosphate, Nat. Phys. 5, 68–73 (2009)

    Article  CAS  Google Scholar 

  34. L. Burgner, M. Weinberg: Crystal growth mechanisms in inorganic glasses, Phys. Chem. Glass.-Eur. J. Glass Sci. Technol. B 42, 184–190 (2001)

    CAS  Google Scholar 

  35. R.J. Kirkpatrick: Crystal growth form the melt: A review, Am. Mineral. 60, 798–814 (1975)

    CAS  Google Scholar 

  36. J.W. Christian: The Theory of Transformations in Metals and Alloys (Pergamon, Oxford 1975)

    Google Scholar 

  37. M. Avrami: Kinetics of Phase Change. I General Theory, J. Chem. Phys. 7, 1103–1112 (1939)

    Article  CAS  Google Scholar 

  38. A.N. Kolmogorov: On the statistical theory of the crystallization of metals, Bull. Acad. Sci. URSS (Cl. Sci. Math. Nat.) 3, 355 (1937)

    Google Scholar 

  39. W.A. Johnson, R.F. Mehl: Reaction kinetics in processes of nucleation and growth, Trans. Am. Inst. Min. Eng. 135, 416–458 (1939)

    Google Scholar 

  40. C.N.R. Rao, K.J. Rao: Phase Transitions in Solids (McGraw-Hill, New York 1978)

    Google Scholar 

  41. V.M. Fokin, E.D. Zanotto, N.S. Yuritsyn, J.W.P. Schmelzer: Homogeneous crystal nucleation in silicate glasses: A 40 years perspective, J. Non-Cryst. Solids 352, 2681–2714 (2006)

    Article  CAS  Google Scholar 

  42. J.W.P. Schmelzer, A.R. Gokhman, V.M. Fokin: Dynamics of first-order phase transitions in multicomponent systems: A new theoretical approach, J. Colloid. Interface Sci. 272, 109–133 (2004)

    Article  CAS  Google Scholar 

  43. P.G. Vekilov: Nucleation, Cryst. Growth Des. 10, 5007–5019 (2010)

    Article  CAS  Google Scholar 

  44. K.F. Kelton, A.L. Greer, C.V. Thompson: Transient nucleation in condensed systems, J. Chem. Phys. 79, 6261–6276 (1983)

    Article  CAS  Google Scholar 

  45. A. Dillmann, G.E.A. Meier: Homogeneous nucleation of supersaturated vapors, Chem. Phys. Lett. 160, 71–74 (1989)

    Article  CAS  Google Scholar 

  46. K. Lakshmi Narayan, K.F. Kelton, C.S. Ray: Effect of Pt doping on nucleation and crystallization in Li2O-2SiO2 glass: experimental measurements and computer modeling, J. Non-Cryst. Solids 195, 148–157 (1996)

    Article  Google Scholar 

  47. K.S. Ranasinghe, P.F. Wei, K.F. Kelton, C.S. Ray, D.E. Day: Verification of an analytical method for measuring crystal nucleation rates in glasses from DTA data, J. Non-Cryst. Solids 337, 261–267 (2004)

    Article  CAS  Google Scholar 

  48. J.W. Cahn, J.E. Hilliard: Free energy of a nonuniform system. I. Interfacial free energy, J. Chem. Phys. 28, 258–267 (1958)

    Article  CAS  Google Scholar 

  49. J.W. Cahn: Spinodal decomposition, Acta Metall. 9, 795–801 (1961)

    Article  CAS  Google Scholar 

  50. J.W. Cahn, R.J. Charles: Initial stages of phase separation in glasses, Phys. Chem. Glasses 6, 181–191 (1965)

    CAS  Google Scholar 

  51. J.W.P. Schmelzer: Crystal nucleation and growth in glass-forming melts: Experiment and theory, J. Non-Cryst. Solids 354, 269–278 (2008)

    Article  CAS  Google Scholar 

  52. P.G. Vekilov: Dense liquid precursor for the nucleation of ordered solid phases from solution, Cryst. Growth Des. 4, 671–685 (2004)

    Article  CAS  Google Scholar 

  53. J.W.P. Schmelzer, V.G. Baidakov, G.S. Boltachev: Kinetics of boiling in binary liquid-gas solutions: Comparison of different approaches, J. Chem. Phys. 119, 6166–6183 (2003)

    Article  CAS  Google Scholar 

  54. J.W.P. Schmelzer, G.S. Boltachev, V.G. Baidakov: Classical and generalized Gibbs' approaches and the work of critical cluster formation in nucleation theory, J. Chem. Phys. 124, 194503 (2006)

    Article  CAS  Google Scholar 

  55. A.S. Abyzov, J.W.P. Schmelzer, A.A. Kovalchuk, V.V. Slezov: Evolution of cluster size-distributions in nucleation-growth and spinodal decomposition processes in a regular solution, J. Non-Cryst. Solids 356, 2915–2922 (2010)

    Article  CAS  Google Scholar 

  56. J.W.P. Schmelzer, A.S. Abyzov, J. Moller: Nucleation versus spinodal decomposition in phase formation processes in multicomponent solutions, J. Chem. Phys. 121, 6900–6917 (2004)

    Article  CAS  Google Scholar 

  57. J.F. Lutsko, G. Nicolis: Theoretical evidence for a dense fluid precursor to crystallization, Phys. Rev. Lett. (2006), https://doi.org/10.1103/PhysRevLett.96.046102

    Article  Google Scholar 

  58. P.R. ten Wolde, D. Frenkel: Enhancement of protein crystal nucleation by critical density fluctuations, Science 277, 1975–1978 (1997)

    Article  Google Scholar 

  59. V.J. Anderson, H.N.W. Lekkerkerker: Insights into phase transition kinetics from colloid science, Nature 416, 811–815 (2002)

    Article  CAS  Google Scholar 

  60. S.T. Yau, P.G. Vekilov: Direct observation of nucleus structure and nucleation pathways in apoferritin crystallization, J. Am. Chem. Soc. 123, 1080–1089 (2001)

    Article  CAS  Google Scholar 

  61. D. Erdemir, A.Y. Lee, A.S. Myerson: Nucleation of crystals from solution: Classical and two-step models, Acc. Chem. Res. 42, 621–629 (2009)

    Article  CAS  Google Scholar 

  62. W. Pan, A.B. Kolomeisky, P.G. Vekilov: Nucleation of ordered solid phases of proteins via a disordered high-density state: Phenomenological approach, J. Chem. Phys. 122, 174905 (2005)

    Article  CAS  Google Scholar 

  63. J. de Yoreo: Crystal nucleation: More than one pathway, Nat. Mater. 12, 284–285 (2013)

    Article  CAS  Google Scholar 

  64. W. Holand, V. Rheinberger, M. Schweiger: Control of nucleation in glass ceramics, Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 361, 575–588 (2003)

    Article  CAS  Google Scholar 

  65. L.R. Pinckney, G.H. Beall: Microstructural evolution in some silicate glass-ceramics: A review, J. Am. Ceram. Soc. 91, 773–779 (2008)

    Article  CAS  Google Scholar 

  66. E.D. Zanotto, V.M. Fokin: Recent studies of internal and surface nucleation in silicate glasses, Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 361, 591–0612 (2003)

    Article  CAS  Google Scholar 

  67. S.D. Stookey: Catalyzed crystallization of glass in theory and practice, Ind. Eng. Chem. 51, 805–808 (1959)

    Article  CAS  Google Scholar 

  68. M. Dittmer, M. Müller, C. Rüssel: Self-organized nanocrystallinity in MgO-Al2O3-SiO2 glasses with ZrO2 as nucleating agent, Mater. Chem. Phys. 124, 1083–1088 (2010)

    Article  CAS  Google Scholar 

  69. G.H. Beall, B.R. Karstett, H.L. Rittler: Crystallization and chemical strengthening of stuffed beta-quartz glass-ceramics, J. Am. Ceram. Soc. 50, 181–190 (1967)

    Article  CAS  Google Scholar 

  70. G.H. Beall: Design and properties of glass-ceramics, Annu. Rev. Mater. Sci. 22, 91–119 (1992)

    Article  CAS  Google Scholar 

  71. C. Patzig, T. Höche, M. Dittmer, C. Rüssel: Temporal evolution of crystallization in MgO-Al2O3-SiO2-ZrO2 glass ceramics, Cryst. Growth Des. 12, 2059–2067 (2012)

    Article  CAS  Google Scholar 

  72. S. Bhattacharyya, C. Bocker, T. Heil, J.R. Jinschek, T. Höche, C. Rüssel, H. Kohl: Experimental evidence of self-limited growth of nanocrystals in glass, Nano Lett. 9, 2493–2496 (2009)

    Article  CAS  Google Scholar 

  73. T. Höche, C. Patzig, T. Gemming, R. Wurth, C. Rüssel, I. Avramov: Temporal evolution of diffusion barriers surrounding ZrTiO4 nuclei in lithia aluminosilicate glass-ceramics, Cryst. Growth Des. 12, 1556–1563 (2012)

    Article  CAS  Google Scholar 

  74. G.H. Beall, L.R. Pinckney: Nanophase glass-ceramics, J. Am. Ceram. Soc. 82, 5–16 (1999)

    Article  CAS  Google Scholar 

  75. M.J. Dejneka: The luminescence and structure of novel transparent oxyfluoride glass-ceramics, J. Non-Cryst. Solids 239, 149–155 (1998)

    Article  CAS  Google Scholar 

  76. M. Höland, A. Dommann, W. Holand, V. Rheinberger: Microstructure formation and surface properties of a rhenanite-type glass-ceramic containing 6.0 wt% P2O5, Glass Sci. Technol. 78, 153–158 (2005)

    Google Scholar 

  77. J. Macdowell, G.H. Beall: Immiscibility and crystallization in Al2O3-SiO2 glasses, J. Am. Ceram. Soc. 52, 17–25 (1969)

    Article  CAS  Google Scholar 

  78. S. Chenu, E. Véron, C. Genevois, G. Matzen, T. Cardinal, A. Etienne, D. Massiot, M. Allix: Tuneable nanostructuring of highly transparent zinc gallogermanate glasses and glass-ceramics, Adv. Opt. Mater. 2, 364–372 (2014)

    Article  CAS  Google Scholar 

  79. S. Chenu, E. Véron, C. Genevois, A. Garcia, G. Matzen, M. Allix: Long-lasting luminescent ZnGa2O4:Cr3+ transparent glass-ceramics, J. Mater. Chem. C 2, 10002–10010 (2014)

    Article  CAS  Google Scholar 

  80. P.F. James: Glass-ceramics – New compositions and uses, J. Non-Cryst. Solids 181, 1–15 (1995)

    Article  CAS  Google Scholar 

  81. C.J. Brinker, G.W. Scherer: Sol-Gel Science (Academic, New York 1990)

    Google Scholar 

  82. T. Ban, Y. Ohta, Y. Takahashi: Low-temperature crystallization of forsterite and orthoenstatite, J. Am. Ceram. Soc. 82, 22–26 (1999)

    Article  CAS  Google Scholar 

  83. E. Bernardo, G. Scarinci, E. Edme, U. Michon, N. Planty: Fast-sintered gehlenite glass-ceramics from plasma-vitrified municipal solid waste incinerator fly ashes, J. Am. Ceram. Soc. 92, 528–530 (2009)

    Article  CAS  Google Scholar 

  84. D.T. Weaver, D.C. Van Aken, J.D. Smith: The role of bulk nucleation in the formation of crystalline cordierite coatings produced by air plasma spraying, Mater. Sci. Eng. A 339, 96–102 (2003)

    Article  Google Scholar 

  85. C.R. Chang, J.H. Jean: Crystallization kinetics and mechanism of low-dielectric, low-temperature, cofirable CaO-B2O3-SiO2 glass-ceramics, J. Am. Ceram. Soc. 82, 1725–1732 (1999)

    Article  CAS  Google Scholar 

  86. W. Wisniewski, M. Patschger, S. Murdzheva, C. Thieme, C. Rüssel: Oriented nucleation of both Ge-fresnoite and benitoite/BaGe4O9 during the surface crystallisation of glass studied by electron backscatter diffraction, Sci. Rep. (2016), https://doi.org/10.1038/srep20125

    Article  Google Scholar 

  87. T. Höche, R. Keding, C. Rüssel, R. Hergt: Microstructural characterization of grain-oriented glass-ceramics in the system Ba2TiSi2O8-SiO2, J. Mater. Sci. 34, 195–208 (1999)

    Article  Google Scholar 

  88. W. Holand, M. Frank, V. Rheinberger: Surface crystallization of leucite in glasses, J. Non-Cryst. Solids 180, 292–307 (1995)

    Article  Google Scholar 

  89. J. Schneider, V.R. Mastelaro, H. Panepucci, E.D. Zanotto: Si-29 MAS-NMR studies of Q(n) structural units in metasilicate glasses and their nucleating ability, J. Non-Cryst. Solids 273, 8–18 (2000)

    Article  CAS  Google Scholar 

  90. D.S. Jung, J.M. Han, Y.C. Kang: Sintering characteristics of CaO-B2O3-SiO2 glass-ceramic powders prepared by spray pyrolysis, J. Ceram. Process. Res. 10, 77–80 (2009)

    Google Scholar 

  91. M. Albakry, M. Guazzato, M.V. Swain: Influence of hot pressing on the microstructure and fracture toughness of two pressable dental glass-ceramics, J. Biomed. Mater. Res. Part B 71B, 99–107 (2004)

    Article  CAS  Google Scholar 

  92. W. Wisniewski, M. Patschger, C. Rüssel: Viscous fingering and dendritic growth of surface crystallized Sr2TiSi2O8 fresnoite, Sci. Rep. (2013), https://doi.org/10.1038/srep03558

    Article  Google Scholar 

  93. M. Wada, M. Ninomiya: Glass-ceramic architectural cladding materials, Sci. Tech. Compost. Mater. 30, 846–850 (1995)

    Google Scholar 

  94. M. Hubert, G. Delaizir, J. Monnier, C. Godart, H.L. Ma, X.H. Zhang, L. Calvez: An innovative approach to develop highly performant chalcogenide glasses and glass-ceramics transparent in the infrared range, Opt. Express 19, 23513–23522 (2011)

    Article  CAS  Google Scholar 

  95. A. Stone, M. Sakakura, Y. Shimotsuma, G. Stone, P. Gupta, K. Miura, K. Hirao, V. Dierolf, H. Jain: Directionally controlled 3D ferroelectric single crystal growth in LaBGeO5glass by femtosecond laser irradiation, Opt. Express 17, 23284–23289 (2009)

    Article  CAS  Google Scholar 

  96. D. Savytskii, B. Knorr, V. Dierolf, H. Jain: Demonstration of single crystal growth via solid-solid transformation of a glass, Sci. Rep. (2016), https://doi.org/10.1038/srep23324

    Article  Google Scholar 

  97. D.I.H. Atkinson, P.W. McMillan: Glass-ceramics with random and oriented microstructures – Part 2. Physical-properties of a randomly oriented glass-ceramic, J. Mater. Sci. 11, 994–1002 (1976)

    Article  Google Scholar 

  98. O. Anspach, R. Keding, C. Rüssel: Oriented lithium disilicate glass-ceramics prepared by electrochemically induced nucleation, J. Non-Cryst. Solids 351, 656–662 (2005)

    Article  CAS  Google Scholar 

  99. C. Moisescu, C. Jana, S. Habelitz, G. Carl, C. Rüssel: Oriented fluoroapatite glass-ceramics, J. Non-Cryst. Solids 248, 176–182 (1999)

    Article  CAS  Google Scholar 

  100. U. Ding, Y. Miura, S. Nakaoka, T. Nanba: Oriented surface crystallization of lithium niobate on glass and second harmonic generation, J. Non-Cryst. Solids 259, 132–138 (1999)

    Article  CAS  Google Scholar 

  101. C. Rüssel: Oriented crystallization of glass. A review, J. Non-Cryst. Solids 219, 212–218 (1997)

    Article  Google Scholar 

  102. Y. Ding, Y. Miura, A. Osaka: Polar-oriented crystallization of fresnoite (Ba2TiSi2O8) on glass-surface due to ultrasonic treatment with suspensions, J. Am. Ceram. Soc. 77, 2905–2910 (1994)

    Article  CAS  Google Scholar 

  103. J. Llorca, V.M. Orera: Directionally solidified eutectic ceramic oxides, Prog. Mater. Sci. 51, 711–809 (2006)

    Article  CAS  Google Scholar 

  104. S.D. Stookey: Photosensitive glass – A new photographic medium, Ind. Eng. Chem. 41, 856–861 (1949)

    Article  CAS  Google Scholar 

  105. V.M. Fokin, G.P. Souza, E.D. Zanotto, J. Lumeau, L. Glebova, L.B. Glebov: Sodium fluoride solubility and crystallization in photo-thermo-refractive glass, J. Am. Ceram. Soc. 93, 716–721 (2010)

    Article  CAS  Google Scholar 

  106. J. Lumeau, A. Sinitskii, L. Glebova, L.B. Glebov, E.D. Zanotto: Spontaneous and photo-induced crystallisation of photo-thermo-refractive glass, Phys. Chem. Glass. – Eur. J. Glass Sci. Technol. B 48, 281–284 (2007)

    CAS  Google Scholar 

  107. R. Ihara, T. Honma, Y. Benino, T. Fujiwara, R. Sato, T. Komatsu: Writing of two-dimensional crystal curved lines at the surface of Sm2O3-Bi2O3-B2O3 glass by samarium atom heat processing, Solid State Commun. 136, 273–277 (2005)

    Article  CAS  Google Scholar 

  108. A. Royon, K. Bourhis, M. Bellec, G. Papon, B. Bousquet, Y. Deshayes, T. Cardinal, L. Canioni: Silver clusters embedded in glass as a perennial high capacity optical recording medium, Adv. Mater. 22, 5282–5286 (2010)

    Article  CAS  Google Scholar 

  109. E. Véron: Synthèse et étude structurale de la gehlenite au bore Ca2Al2–xBxSiO7: mécanisme de substitution B/Al et ordre local, PhD Thesis (Université d'Orléans, Orléans 2010)

    Google Scholar 

  110. C.S. Ray, Q.Z. Yang, W.H. Huang, D.E. Day: Surface and internal crystallization in classes as determined by differential thermal analysis, J. Am. Ceram. Soc. 79, 3155–3160 (1996)

    Article  CAS  Google Scholar 

  111. C.S. Ray, D.E. Day: An analysis of nucleation-rate type of curves in glass as determined by differential thermal analysis, J. Am. Ceram. Soc. 80, 3100–3108 (1997)

    Article  CAS  Google Scholar 

  112. C.S. Ray, D.E. Day: Determining the nucleation rate curve for lithium disilicate glass by differential thermal-analysis, J. Am. Ceram. Soc. 73, 439–442 (1990)

    Article  CAS  Google Scholar 

  113. A. Marotta, A. Buri, F. Branda: Nucleation in glass and differential thermal-analysis, J. Mater. Sci. 16, 341–344 (1981)

    Article  CAS  Google Scholar 

  114. H.M. Rietveld: A profile refinement method for nuclear and magnetic structures, J. Appl. Cryst. 2, 65–71 (1969)

    Article  CAS  Google Scholar 

  115. A.F. Gualtieri: A guided training exercise of quantitative phase analysis using EXPGUI, http://www.ccp14.ac.uk/gsas/files/expgui_quant_ gualtieri.pdf (2003)

  116. G.W. Brindley: XLV. The effect of grain or particle size on X-ray reflections from mixed powders and alloys, considered in relation to the quantitative determination of crystalline substances by X-ray methods, Philos. Mag. Ser. 36, 347–369 (1945)

    Article  CAS  Google Scholar 

  117. A.L. Patterson: The Scherrer formula for x-ray particle size determination, Phys. Rev. 56, 978–982 (1939)

    Article  CAS  Google Scholar 

  118. E.J. Mittemeijer, U. Welzel: The “state of the art” of the diffraction analysis of crystallite size and lattice strain, Z. Kristallog. 223, 552–560 (2008)

    Article  CAS  Google Scholar 

  119. A. Le Bail: Profile fitting, decomposition, and microstructural effects. In: Accuracy in Powder Diffraction II, NIST Special Publication, Vol. 846, ed. by E. Prince, J.K. Stalick (NIST, Gaithersburg 1992) p. 213

    Google Scholar 

  120. L. Lutterotti: Total pattern fitting for the combined size-strain-stress-texture determination in thin film diffraction, Nucl. Instrum. Methods Phys. Res. Sect. B 268, 334–340 (2010)

    Article  CAS  Google Scholar 

  121. O. Dargaud, L. Cormier, N. Menguy, L. Galoisy, G. Calas, S. Papin, G. Querel, L. Olivi: Structural role of Zr4+ as a nucleating agent in a MgO-Al2O3-SiO2 glass-ceramics: A combined XAS and HRTEM approach, J. Non-Cryst. Solids 356, 2928–2934 (2010)

    Article  CAS  Google Scholar 

  122. W. Wisniewski, C. Rüssel: EBSD measurements of phlogopite glass ceramics, CrystEngComm 17, 8671–8675 (2015)

    Article  CAS  Google Scholar 

  123. W. Wisniewski, K. Takano, Y. Takahashi, T. Fujiwara, C. Rüssel: Microstructure of transparent strontium fresnoite glass-ceramics, Sci. Rep. (2015), https://doi.org/10.1038/srep09069

    Article  Google Scholar 

  124. T. Höche: Crystallization in glass: elucidating a realm of diversity by transmission electron microscopy, J. Mater. Sci. 45, 3683–3696 (2010)

    Article  CAS  Google Scholar 

  125. O. Dargaud, G. Calas, L. Cormier, L. Galoisy, C. Jousseaume, G. Querel, M. Newville: In situ study of nucleation of zirconia in an MgO-Al2O3-SiO2 glass, J. Am. Ceram. Soc. 93, 342–344 (2010)

    Article  CAS  Google Scholar 

  126. S. Bhattacharyya, T. Höche, J.R. Jinschek, I. Avramov, R. Wurth, M. Müller, C. Rüssel: Direct evidence of Al-rich layers around nanosized ZrTiO4 in glass: Putting the role of nucleation agents in perspective, Cryst. Growth Des. 10, 379–385 (2010)

    Article  CAS  Google Scholar 

  127. C. Patzig, M. Dittmer, A. Gawronski, T. Hoeche, C. Rüssel: Crystallization of ZrO2-nucleated MgO/Al2O3/SiO2 glasses – A TEM study, CrystEngComm 16, 6578–6587 (2014)

    Article  CAS  Google Scholar 

  128. W. Vogel, L. Horn, H. Reiss, G. Volksch: Electron-microscopical studies of glass, J. Non-Cryst. Solids 49, 221–240 (1982)

    Article  CAS  Google Scholar 

  129. O. Becker, K. Bange: Ultramicrotomy – An alternative cross-section preparation for oxidic thin-films on glass, Ultramicroscopy 52, 73–84 (1993)

    Article  CAS  Google Scholar 

  130. J. Ayache, L. Beaunier, J. Boumendil, G. Ehret, D. Laub: Guide de Préparation des Échantillons Pour la Microscopie Électronique en Transmission (MRCT-CNRS, Meudon 2007)

    Google Scholar 

  131. E. Apel, J. Deubener, A. Bernard, M. Holand, R. Müller, H. Kappert, V. Rheinberger, W. Holand: Phenomena and mechanisms of crack propagation in glass-ceramics, J. Mech. Behav. Biomed. Mater. 1, 313–325 (2008)

    Article  CAS  Google Scholar 

  132. E. Radlein, G.H. Frischat: Atomic force microscopy as a tool to correlate nanostructure to properties of glasses, J. Non-Cryst. Solids 222, 69–82 (1997)

    Article  CAS  Google Scholar 

  133. M. Eden: NMR studies of oxide-based glasses, Annu. Rep. Sect. C 108, 177–221 (2012)

    Article  CAS  Google Scholar 

  134. J.V. Hanna, M.E. Smith: Recent technique developments and applications of solid state NMR in characterising inorganic materials, Solid State Nucl. Magn. Reson. 38, 1–18 (2010)

    Article  CAS  Google Scholar 

  135. D. Massiot, F. Fayon, V. Montouillout, N. Pellerin, J. Hiet, C. Rolland, P. Florian, J.P. Coutures, L. Cormier, D.R. Neuville: Structure and dynamics of oxide melts and glasses: A view from multinuclear and high temperature NMR, J. Non-Cryst. Solids 354, 249–254 (2008)

    Article  CAS  Google Scholar 

  136. M.J. Duer: Introduction to Solid-State NMR Spectroscopy (Wiley, Hoboken 2005)

    Google Scholar 

  137. K. Mackenzie, M. Smith: Multinuclear Solid-State NMR of Inorganic Materials (Pergamon, Oxford 2002)

    Google Scholar 

  138. W.S. Price: Spin dynamics: Basics of nuclear magnetic resonance. In: Concepts in Magnetic Resonance Part A, 2nd edn., Vol. 34 (2009) pp. 60–61

    Google Scholar 

  139. D. Massiot, R.J. Messinger, S. Cadars, M. Deschamps, V. Montouillout, N. Pellerin, E. Véron, M. Allix, P. Florian, F. Fayon: Topological, geometric, and chemical order in materials: Insights from solid-state NMR, Acc. Chem. Res. 46, 1975–1984 (2013)

    Article  CAS  Google Scholar 

  140. M. Guignard, L. Cormier, V. Montouillout, N. Menguy, D. Massiot, A.C. Hannon, B. Beuneu: Rearrangement of the structure during nucleation of a cordierite glass doped with TiO2, J. Phys.-Cond. Matter (2010), https://doi.org/10.1088/0953-8984/22/18/185401

    Article  Google Scholar 

  141. M. Goswami, G.P. Kothlyal, L. Montagne, L. Delevoye: MAS-NMR study of lithium zinc silicate glasses and glass-ceramics with various ZnO content, J. Solid State Chem. 181, 269–275 (2008)

    Article  CAS  Google Scholar 

  142. D. de Lygny, D.R. Neuville: Raman spectroscopy: A valuable tool to improve our understanding of nucleation and growth mechanism. In: From Glass to Crystal – Nucleation, Growth and Phase Separation: From Research to Applications, ed. by D.R. Neuville, L. Cormier, D. Caurant, L. Montagne (EDP Sciences, Les Ulis 2017)

    Google Scholar 

  143. Y. Takahashi, M. Osada, H. Masai, T. Fujiwara: Transmission electron microscopy and in situ Raman studies of glassy sanbornite: An insight into nucleation trend and its relation to structural variation, J. Appl. Phys. (2010), https://doi.org/10.1063/1.3487473

    Article  Google Scholar 

  144. M. Bouska, S. Pechev, Q. Simon, R. Boidin, V. Nazabal, J. Gutwirth, E. Baudet, P. Němec: Pulsed laser deposited GeTe-rich GeTe-Sb2Te3 thin films, Sci. Rep. (2016), https://doi.org/10.1038/srep26552

    Article  Google Scholar 

  145. J. Gaudin, O. Peyrusse, J. Chalupsky, M. Toufarova, L. Vysin, V. Hajkova, R. Sobierajski, T. Burian, S. Dastjani-Farahani, A. Graf, M. Amati, L. Gregoratti, S.P. Hau-Riege, G. Hoffmann, L. Juha, J. Krzywinski, R.A. London, S. Moeller, H. Sinn, S. Schorb, M. Stormer, T. Tschentscher, V. Vorlicek, H. Vu, J. Bozek, C. Bostedt: Amorphous to crystalline phase transition in carbon induced by intense femtosecond x-ray free-electron laser pulses, Phys. Rev. B (2012), https://doi.org/10.1103/PhysRevB.86.024103

    Article  Google Scholar 

  146. G.E. Brown, F. Farges, G. Calas: X-ray scattering and x-ray spectroscopy studies of silicate melts, Struct. Dyn. Prop. Silic. Melts 32, 317–410 (1995)

    CAS  Google Scholar 

  147. L. Cormier, O. Dargaud, N. Menguy, G.S. Henderson, M. Guignard, N. Trcera, B. Watts: Investigation of the role of nucleating agents in MgO-SiO2-Al2O3-SiO2-TiO2 glasses and glass-ceramics: A XANES study at the Ti K- and L2,3-edges, Cryst. Growth Des. 11, 311–319 (2011)

    Article  CAS  Google Scholar 

  148. H. Schnablegger, Y. Singh: The SAXS Guide – Getting Acquainted with the Principles, 2nd edn. (Anton Paar GmbH, Graz 2011)

    Google Scholar 

  149. G. Lelong, D.L. Price, M.L. Saboungi: Scattering techniques. In: Nanoporous Materials, ed. by N. Kamellopoulos (CRC Press, Boca Raton 2011)

    Google Scholar 

  150. A. Loshmano, V.N. Sigaev, R. Khodakov, N. Pavlushk, I. Yamzin: Small-angle neutron-scattering on silica glasses containing titania, J. Appl. Cryst. 7, 207–210 (1974)

    Article  Google Scholar 

  151. A.F. Wright, J. Talbot, B.E.F. Fender: Nucleation and growth studies by small-angle neutron-scattering and results for a glass-ceramic, Nature 277, 366–368 (1979)

    Article  CAS  Google Scholar 

  152. A.F. Wright, A.N. Fitch, J.B. Hayter, B.E.F. Fender: Nucleation and crystallization of cordierite TiO2 glass-cermaic. I: Small-angle neutron-scattering measurements and simulations, Phys. Chem. Glasses 26, 113–118 (1985)

    CAS  Google Scholar 

  153. U. Lembke, R. Bruckner, R. Kranold, T. Höche: Phase formation kinetics in a glass ceramic studied by small-angle scattering of X-rays and neutrons and by visible-light scattering, J. Appl. Crystallogr. 30, 1056–1064 (1997)

    Article  Google Scholar 

  154. M.P. Borom, A.M. Turkalo, R.H. Doremus: Strength and microstructure in lithium disilicate glass-ceramics, J. Am. Ceram. Soc. 58, 385–391 (1975)

    Article  CAS  Google Scholar 

  155. P. Bennema: Crystal growth from solution – Theory and experiment, J. Cryst. Growth 24/25, 76–83 (1974)

    Article  Google Scholar 

  156. K.A. Jackson: Theory of crystal growth. In: Changes of state, Treatise on Solid State Chemistry, Vol. 5, ed. by N.B. Hannay (Plenum, Boston 1975) pp. 233–288

    Chapter  Google Scholar 

  157. R.J. Kirkpatrick, L. Klein, D.R. Uhlmann, J.F. Hays: Rates and proceses of crystal growth in the system anorthite-albite, J. Geophys. Res. 84, 3671–3676 (1979)

    Article  CAS  Google Scholar 

  158. Y. Oaki, H. Imai: Experimental demonstration for the morphological evolution of crystals grown in gel media, Cryst. Growth Des. 3, 711–716 (2003)

    Article  CAS  Google Scholar 

  159. N. Steno: De solido intra solidum naturaliter contento, https://archive.org/details/ita-bnc-mag-00001426-001 (1669)

  160. J.-B.L. Romé de L'isle: Cristallographie, ou Description des formes propres à tous les corps du règne minéral, dans l'état de combinaison saline, pierreuse ou métallique (Paris 1783)

    Google Scholar 

  161. R.-J. Haüy: Essai d'une Théorie sur la Structure des Crystaux (Paris 1784)

    Google Scholar 

  162. V. Maier, G. Müller: Mechanisms of oxide nucleation in lithium aluminosilicate glass-ceramics, J. Am. Ceram. Soc. 70, C176–C178 (1987)

    Article  Google Scholar 

  163. G.H. Beall, D.A. Duke: Transparent glass-ceramics, J. Mater. Sci. 4, 340–352 (1969)

    Article  CAS  Google Scholar 

  164. E. Apel, C. van't Hoen, V. Rheinberger, W. Holand: Influence of ZrO2 on the crystallization and properties of lithium disilicate glass-ceramics derived from a multi-component system, J. Eur. Ceram. Soc. 27, 1571–1577 (2007)

    Article  CAS  Google Scholar 

  165. H. Shao, K.M. Liang, F. Zhou, G.L. Wang, A.M. Hu: Microstructure and mechanical properties of MgO-Al2O3-SiO2-TiO2 glass-ceramics, Mater. Res. Bull. 40, 499–506 (2005)

    Article  CAS  Google Scholar 

  166. T. Uno, T. Kasuga, K. Nakajima: High-strenght mica-containing glass-ceramics, J. Am. Ceram. Soc. 74, 3139–3141 (1991)

    Article  CAS  Google Scholar 

  167. L.R. Pinckney: Transparent, high strain point spinel glass-ceramics, J. Non-Cryst. Solids 255, 171–177 (1999)

    Article  CAS  Google Scholar 

  168. M.J. Dejneka: Transparent oxyfluoride glass ceramics, MRS Bulletin 23, 57–62 (1998)

    Article  CAS  Google Scholar 

  169. S. Bhattacharyya, T. Höche, N. Hemono, M.J. Pascual, P.A. van Aken: Nano-crystallization in LaF3-Na2O-Al2O3-SiO2 glass, J. Cryst. Growth 311, 4350–4355 (2009)

    Article  CAS  Google Scholar 

  170. S. Roy, B. Basu: On the development of two characteristically different crystal morphology in SiO2-MgO-Al2O3-K2O-B2O3-F glass-ceramic system, J. Mater. Sci.-Mater. Med. 20, 51–66 (2009)

    Article  CAS  Google Scholar 

  171. W.E. Lee, S.E. Arshad, P.F. James: Importance of crystallization hierarchies in microstructural evolution of silicate glass-ceramics, J. Am. Ceram. Soc. 90, 727–737 (2007)

    Article  CAS  Google Scholar 

  172. A. Gebhardt, T. Höche, G. Carl, I.I. Khodos: TEM study on the origin of cabbage-shaped mica crystal aggregates in machinable glass-ceramics, Acta Mater. 47, 4427–4434 (1999)

    Article  CAS  Google Scholar 

  173. W. Holand, M. Frank, V. Rheinberger: Opalescence in dental products, Thermochim. Acta 280, 491–499 (1996)

    Article  Google Scholar 

  174. W. Holand, V. Rheinberger, S. Wegner, M. Frank: Needle-like apatite-leucite glass-ceramic as a base material for the veneering of metal restorations in dentistry, J. Mater. Sci. – Mater. Med. 11, 11–17 (2000)

    Article  CAS  Google Scholar 

  175. K. Pengpat, D. Holland: Glass-ceramics containing ferroelectric bismuth germanate (Bi2GeO5), J. Eur. Ceram. Soc. 23, 1599–1607 (2003)

    Article  CAS  Google Scholar 

  176. T. Ryll, A. Brunner, S. Ellenbroek, A. Bieberle-Hutter, J.L.M. Rupp, L.J. Gauckler: Electrical conductivity and crystallization of amorphous bismuth ruthenate thin films deposited by spray pyrolysis, Phys. Chem. Chem. Phys. 12, 13933–13942 (2010)

    Article  CAS  Google Scholar 

  177. D.I. Atkinson, P.W. McMillan: Glass-ceramics with an aligned microstructure, J. Mater. Sci. 10, 2012–2014 (1975)

    Article  Google Scholar 

  178. T. Höche, S. Habelitz, I. Avramov: Crystal morphology engineering in SiO2-Al2O3-MgO-K2O-Na2O-F- mica glass-ceramics, Acta Mater. 47, 735–744 (1999)

    Article  Google Scholar 

  179. G.H. Beall: Chain silicate glass-ceramics, J. Non-Cryst. Solids 129, 163–173 (1991)

    Article  CAS  Google Scholar 

  180. E.D. Zanotto: A bright future for glass-ceramics, Am. Ceram. Soc. Bull. 89, 19–27 (2010)

    CAS  Google Scholar 

  181. W. Pannhorst: Recent developments for commercial applications of low expansion glass ceramics, Glass Technol. 45, 51–53 (2004)

    CAS  Google Scholar 

  182. W. Pannhorst: Glass ceramics: state-of-the-art, J. Non-Cryst. Solids 219, 198–204 (1997)

    Article  CAS  Google Scholar 

  183. Z. Strnad: Glass-Ceramic Materials: Liquid Phase Separation, Nucleation, and Crystallization in Glasses (Elsevier, Amsterdam 1986)

    Google Scholar 

  184. J. Zimmer, F. Raether, G. Müller: In-situ investigations of sintering and crystallization of lithium aluminosilicate glass-ceramics, Glastech. Ber. – Glass Sci. Technol. 70, 186–188 (1997)

    CAS  Google Scholar 

  185. J. Petzoldt, W. Pannhorst: Chemistry and structure of glass-ceramic materials for high-precision optical applications, J. Non-Cryst. Solids 129, 191–198 (1991)

    Article  CAS  Google Scholar 

  186. U. Schiffner, W. Pannhorst: Nucleation in a precursor glass for a Li2O-Al2O3-SiO2 glass ceramic. Part 1. Nucleation kinetics, Glastech. Ber. – Glass Sci. Technol. 60, 211–221 (1987)

    CAS  Google Scholar 

  187. Y.H. Wang, J. Ohwaki: New transparent vitroceramics codoped with Er3+ and Yb3+ for efficient frequency up-conversion, Appl. Phys. Lett. 63, 3268–3270 (1993)

    Article  CAS  Google Scholar 

  188. F. Auzel, D. Pecile, D. Morin: Rare-earth doped vitroceramics – New, efficient, blue and green emitting materials for infrared up-conversion, J. Electrochem. Soc. 122, 101–107 (1975)

    Article  CAS  Google Scholar 

  189. J. Mendez-Ramos, V. Lavin, I.R. Martin, U.R. Rodriguez-Mendoza, V.D. Rodriguez, A.D. Lozano-Gorrin, P. Nunez: Role of the Eu3+ ions in the formation of transparent oxyfluoride glass ceramics, J. Appl. Phys. 89, 5307–5310 (2001)

    Article  CAS  Google Scholar 

  190. G. Mie: Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions, Ann. Phys. 25, 377–445 (1908)

    Article  CAS  Google Scholar 

  191. J. Strutt: On the transmission of light through an atmosphere containing small particles in suspension, and on the origin of the blue of the sky, Philosoph. Mag. 47, 375–394 (1899)

    Google Scholar 

  192. T. Berthier, V.M. Fokin, E.D. Zanotto: New large grain, highly crystalline, transparent glass-ceramics, J. Non-Cryst. Solids 354, 1721–1730 (2008)

    Article  CAS  Google Scholar 

  193. M. Kerker: The Scattering of Light (Academic, New York 1969)

    Google Scholar 

  194. R.W. Hopper: Stochastic-theory of scattering from idealized spinodal structures. Part 2. Scattering in general and for the basic late stage model, J. Non-Cryst. Solids 70, 111–142 (1985)

    Article  CAS  Google Scholar 

  195. M. Mattarelli, G. Gasperi, M. Montagna, P. Verrocchio: Transparency and long-ranged fluctuations: The case of glass ceramics, Phys. Rev B (2010), https://doi.org/10.1103/PhysRevB.82.094204

    Article  Google Scholar 

  196. L.J. Andrews, G.H. Beall, A. Lempicki: Luminescence of Cr3+ in mullite transparent glass-ceramics, J. Lumin. 36, 65–74 (1986)

    Article  CAS  Google Scholar 

  197. R. Reisfeld: Potential uses of chromium(III)-doped transparent glass-ceramics in tunable lasers and luminescent solar concentrators, Mater. Sci. Eng. 71, 375–382 (1985)

    Article  CAS  Google Scholar 

  198. R. Reisfeld, A. Kisilev, A. Buch, M. Ish-Shalom: Transparent glass-ceramics doped by chromium(III) – Spectroscopic properties and characterization of crystalline phases, J. Non-Cryst. Solids 91, 333–350 (1987)

    Article  CAS  Google Scholar 

  199. A. Kisilev, R. Reisfeld, E. Greenberg, A. Buch, M. Ish-Shalom: Spectroscopy of chromium(III) in beta-quartz and petalite-like transparent glass-ceramics-ligand-field strengths of chromium(III), Chem. Phys. Lett. 105, 405–408 (1984)

    Article  CAS  Google Scholar 

  200. T. Nakanishi, K. Watanabe, J. Ueda, K. Fushimi, S. Tanabe, Y. Hasegawa: Enhanced light storage of SrAl2O4 glass-ceramics controlled by selective europium reduction, J. Am. Ceram. Soc. 98, 423–429 (2015)

    Article  CAS  Google Scholar 

  201. K. Al Saghir, S. Chenu, E. Véron, F. Fayon, M. Suchomel, C. Genevois, F. Porcher, G. Matzen, D. Massiot, M. Allix: Transparency through structural disorder: A new concept for innovative transparent ceramics, Chem. Mater. 27, 508–514 (2015)

    Article  CAS  Google Scholar 

  202. S. Tanabe, S. Fujita, S. Yoshihara, A. Sakamoto, S. Yamamoto: YAG glass-ceramic phosphor for white LED (II): Luminescence characteristics, Proc. SPIE 5941, 594112-1 (2005)

    Google Scholar 

  203. S. Fujita, A. Sakamoto, S. Tanabe: Luminescence characteristics of YAG glass-ceramic phosphor for white LED, IEEE J. Sel. Top. Quantum Electron. 14, 1387–1391 (2008)

    Article  CAS  Google Scholar 

  204. A. Ikesue, Y.L. Aung: Ceramic laser materials, Nat. Photon. 2, 721–727 (2008)

    Article  CAS  Google Scholar 

  205. A. Ikesue: Polycrystalline Nd: YAG ceramics lasers, Opt. Mater. 19, 183–187 (2002)

    Article  CAS  Google Scholar 

  206. S. Alahraché, M. Deschamps, J. Lambert, M.R. Suchomel, D. De Sousa Meneses, G. Matzen, D. Massiot, E. Véron, M. Allix: Crystallization of Y2O3-Al2O3 Rich Glasses: Synthesis of YAG glass-ceramics, J. Phys. Chem. C 115, 20499–20506 (2011)

    Article  CAS  Google Scholar 

  207. X. Ma, X. Li, J. Li, C. Genevois, B. Ma, A. Etienne, C. Wan, E. Véron, Z. Peng, M. Allix: Pressureless glass crystallization of transparent yttrium aluminum garnet-based nanoceramics, Nat. Commun. 9, 1175 (2018)

    Article  CAS  Google Scholar 

  208. T. Nakanishi, Y. Katayama, J. Ueda, T. Honma, S. Tanabe, T. Komatsu: Fabrication of Eu:SrAl2O4-based glass ceramics using Frozen sorbet method, J. Ceram. Soc. Jpn. 119, 609–615 (2011)

    Article  CAS  Google Scholar 

  209. T. Nakanishi, S. Tanabe: Novel Eu2+-activated glass ceramics precipitated with green and red phosphors for high-power white LED, IEEE J. Sel. Top. Quantum Electron. 15, 1171–1176 (2009)

    Article  CAS  Google Scholar 

  210. G.H. Beall: Glass-ceramics for photonic applications, Glass Sci. Technol. – Glastech. Ber. 73, 3–11 (2000)

    Google Scholar 

  211. L.R. Pinckney: Transparent beta-willemite glass-ceramics, Glass Sci. Technol. – Glastech. Ber. 73, 329–332 (2000)

    Google Scholar 

  212. J.-S. Wang, F.-H. Shen: The development of SiO2 resistant Cr-doped glass ceramics for high Cr4+ emission, J. Non-Cryst. Solids 358, 246–251 (2012)

    Article  CAS  Google Scholar 

  213. A.M. Malyarevich, I.A. Denisov, Y.V. Volk, K.V. Yumashev, O.S. Dymshits, A.A. Zhilin: Nanosized glass-ceramics doped with transition metal ions: Nonlinear spectroscopy and possible laser applications, J. Alloy. Compd. 341, 247–250 (2002)

    Article  CAS  Google Scholar 

  214. L.R. Pinckney: Transparent Glass-Ceramics Based on ZnO Crystals, Vol. 47 (Society of Glass Technology, Sheffield 2006)

    Google Scholar 

  215. G.H. Beall, L.R. Pinckney, B.N. Samson: Transparent gallate glass-ceramics. US Patent 6632758B2, Assigned to Corning Inc. (2003)

    Google Scholar 

  216. T. Suzuki, Y. Arai, Y. Ohishi: Quantum efficiencies of near-infrared emission from Ni2+-doped glass-ceramics, J. Lumin. 128, 603–609 (2008)

    Article  CAS  Google Scholar 

  217. T. Suzuki, G.S. Murugan, Y. Ohishi: Optical properties of transparent Li2O-Ga2O3-SiO2 glass-ceramics embedding Ni-doped nanocrystals, Appl. Phys. Lett. 86, doi:10.1063/1.1891272 (2005)

    Google Scholar 

  218. D. Deng, H. Ma, S. Xu, Q. Wang, L. Huang, S. Zhao, H. Wang, C. Li: Broadband infrared luminescence of Ni2+-doped silicate glass-ceramics containing lithium aluminate spinel nanocrystals, J. Non-Cryst. Solids 357, 1426–1429 (2011)

    Article  CAS  Google Scholar 

  219. B.N. Samson, L.R. Pinckney, J. Wang, G.H. Beall, N.F. Borrelli: Nickel-doped nanocrystalline glass-ceramic fiber, Opt. Lett. 27, 1309–1311 (2002)

    Article  CAS  Google Scholar 

  220. S.S. Bayya, B.B. Harbison, J.S. Shanghera, I.D. Aggarwal: IR transmitting rare earth gallogermanate glass-ceramics. US Patent (1998)

    Google Scholar 

  221. S.S. Bayya, J.S. Sanghera, I.D. Aggarwal, J.A. Wojcik: Infrared transparent germanate glass-ceramics, J. Am. Ceram. Soc. 85, 3114–3116 (2002)

    Article  CAS  Google Scholar 

  222. S. Zhou, J. Hao, J. Qiu: Ultra-broadband near-infrared luminescence of Ni2+:ZnO-Al2O3-SiO2 nanocomposite glasses prepared by Sol-Gel method, J. Am. Ceram. Soc. 94, 2902–2905 (2011)

    Article  CAS  Google Scholar 

  223. C.X. Fan, B. Poumellec, M. Lancry, X. He, H.D. Zeng, A. Erraji-Chahid, Q.M. Liu, G.R. Chen: Three-dimensional photoprecipitation of oriented LiNbO3-like crystals in silica-based glass with femtosecond laser irradiation, Opt. Lett. 37, 2955–2957 (2012)

    Article  CAS  Google Scholar 

  224. Y. Dai, H.L. Ma, B. Lu, B.K. Yu, B. Zhu, J.R. Qiu: Femtosecond laser-induced oriented precipitation of Ba2TiGe2O8 crystals in glass, Opt. Express 16, 3912–3917 (2008)

    Article  CAS  Google Scholar 

  225. Y.J. Dai, X.W. Zhang, G.Y. Zhou: Phase transitional behavior in K0.5Na0.5NbO3-LiTaO3 ceramics, Appl. Phys. Lett. (2007), https://doi.org/10.1111/j.1551-2916.2011.04671.x

    Article  Google Scholar 

  226. T. Honma, Y. Benino, T. Fujiwara, T. Komatsu, R. Sato: Technique for writing of nonlinear optical single-crystal lines in glass, Appl. Phys. Lett. 83, 2796–2798 (2003)

    Article  CAS  Google Scholar 

  227. T. Shiosaki, M. Adachi, H. Kobayashi, K. Araki, A. Kawabata: Elastic, piezoelectric, acoustooptic and electro-optic properties of Li2B4O7, Jpn. J. Appl. Phys. 24, 25–27 (1985)

    Article  Google Scholar 

  228. D.D. Silva, A.R. Boccaccini: Industrial developments in the field of optically transparent inorganic materials: A survey of recent patents, Recent Pat. Mater. Sci. 1, 56 (2008)

    Article  CAS  Google Scholar 

  229. G. Partridge: Inorganic materials. Part 4. Transparent ceramics and glass-ceramics, Adv. Mater. 2, 553–556 (1990)

    Article  CAS  Google Scholar 

  230. M. Richardson, R. Gaume: Transparent ceramics for lasers – A game-changer, Am. Ceram. Soc. Bull. 91, 30–33 (2012)

    CAS  Google Scholar 

  231. R. Won: View from…ASSP 2008: Ceramic future, Nat. Photonics 2, 216–217 (2008)

    Article  CAS  Google Scholar 

  232. A. Ikesue, T. Kinoshita, K. Kamata, K. Yoshida: Fabrication and optical-properties of high-performance polycristalline Nd-YAG ceramics for solid-state lasers, J. Am. Ceram. Soc. 78, 1033–1040 (1995)

    Article  CAS  Google Scholar 

  233. A. Krell, J. Klimke, T. Hutzler: Transparent compact ceramics: Inherent physical issues, Opt. Mater. 31, 1144–1150 (2009)

    Article  CAS  Google Scholar 

  234. Z.M. Seeley, J.D. Kuntz, N.J. Cherepy, S.A. Payne: Transparent Lu2O3:Eu ceramics by sinter and HIP optimization, Opt. Mater. 33, 1721–1726 (2011)

    Article  CAS  Google Scholar 

  235. U. Peuchert, Y. Okano, Y. Menke, S. Reichel, A. Ikesue: Transparent cubic-ZrO2 ceramics for application as optical lenses, J. Eur. Ceram. Soc. 29, 283–291 (2009)

    Article  CAS  Google Scholar 

  236. M. Boyer, S. Alahraché, C. Genevois, M. Licheron, F.-X. Lefevre, C. Castro, G. Bonnefont, G. Patton, F. Moretti, C. Dujardin, G. Matzen, M. Allix: Enhanced transparency through second phase crystallization in BaAl4O7 scintillating ceramics, Cryst. Growth Des. 16, 386–395 (2016)

    Article  CAS  Google Scholar 

  237. M. Boyer, A.J.F. Carrion, S. Ory, A.I. Becerro, S. Villette, S.V. Eliseeva, S. Petoud, P. Aballea, G. Matzen, M. Allix: Transparent polycrystalline SrREGa3O7 melilite ceramics: potential phosphors for tuneable solid state lighting, J. Mater. Chem. C 4, 3238–3247 (2016)

    Article  CAS  Google Scholar 

  238. S. Alahraché, K. Al Saghir, S. Chenu, E. Véron, D. De Sousa Meneses, A.I. Becerro, M. Ocaña, F. Moretti, G. Patton, C. Dujardin, F. Cussó, J.P. Guin, M. Nivard, J.C. Sangleboeuf, G. Matzen, M. Allix: Perfectly transparent Sr3Al2O6 polycrystalline ceramic elaborated from glass crystallization, Chem. Mater. 25, 4017–4024 (2013)

    Article  CAS  Google Scholar 

  239. M. Allix, S. Alahraché, F. Fayon, M. Suchomel, F. Porcher, T. Cardinal, G. Matzen: Highly transparent BaAl4O7 polycrystalline ceramic obtained by full crystallization from glass, Adv. Mater. 24, 5570–5575 (2012)

    Article  CAS  Google Scholar 

  240. A. Bertrand, J. Carreaud, S. Chenu, M. Allix, E. Véron, J.-R. Duclère, Y. Launay, T. Hayakawa, C. Genevois, F. Brisset, F. Célarié, P. Thomas, G. Delaizir: Scalable and formable tellurite-based transparent ceramics for near infrared applications, Adv. Opt. Mater. 4, 1482–1486 (2016)

    Article  CAS  Google Scholar 

  241. M. Boyer, X. Yang, A.J. Fernández Carrión, Q. Wang, E. Véron, C. Genevois, L. Hennet, G. Matzen, E. Suard, D. Thiaudière, C. Castro, D. Pelloquin, L.B. Kong, X. Kuang, M. Allix: First transparent oxide ion conducting ceramics synthesized by full crystallization from glass, J. Mater. Chem. A 6, 5276–5289 (2018)

    Article  CAS  Google Scholar 

  242. A.J. Fernández-Carrión, K. Al Saghir, E. Véron, A.I. Becerro, F. Porcher, W. Wisniewski, G. Matzen, F. Fayon, M. Allix: Local disorder and tuneable luminescence in Sr1–x/2Al2–xSixO4 (0.2 ≤ x ≤ 0.5) transparent ceramics, Inorg. Chem. 56, 14446–14458 (2017)

    Article  CAS  Google Scholar 

  243. J.B. Qiu, A. Makishima: Frequency up-conversion luminescence in Yb3+-Ho3+ co-doped PbxCd1-xF2 nano-crystals precipitated transparent oxyfluoride glass-ceramics, Sci. Technol. Adv. Mater. 5, 313–317 (2004)

    Article  CAS  Google Scholar 

  244. M. Mortier, G. Patriarche: Structural characterisation of transparent oxyfluoride glass-ceramics, J. Mater. Sci. 35, 4849–4856 (2000)

    CAS  Google Scholar 

  245. J.M. Jewell, E.J. Friebele, I.D. Aggarwal: Transparent heavy-metal fluoride glass-ceramic, J. Non-Cryst. Solids 188, 285–288 (1995)

    Article  CAS  Google Scholar 

  246. M. Mortier, A. Monteville, G. Patriarche, G. Maze, F. Auzel: New progresses in transparent rare-earth doped glass-ceramics, Opt. Mater. 16, 255–267 (2001)

    Article  CAS  Google Scholar 

  247. F. Auzel, K.E. Lipinska Kalita, P. Santa-Cruz: A new Er3+-doped vitreous fluoride amplification medium with crystal-like cross-sections and reduced inhomogeneous line width, Opt. Mater. 5, 75–78 (1996)

    Article  CAS  Google Scholar 

  248. V. Lavin, I. Iparraguirre, J. Azkargorta, A. Mendioroz, J. Gonzalez-Platas, R. Balda, J. Fernandez: Stimulated and upconverted emissions of Nd3+ in a transparent oxyfluoride glass-ceramic, Opt. Mater. 25, 201–208 (2004)

    Article  CAS  Google Scholar 

  249. B.N. Samson, P.A. Tick, N.F. Borrelli: Efficient neodymium-doped glass-ceramic fiber laser and amplifier, Opt. Lett. 26, 145–147 (2001)

    Article  CAS  Google Scholar 

  250. J. Fu, J.M. Parker, P.S. Flower, R.M. Brown: Eu2+ ions and CaF2-containing transparent glass-ceramics, Mater. Res. Bull. 37, 1843–1849 (2002)

    Article  CAS  Google Scholar 

  251. X.S. Qiao, X.P. Fan, J. Wang, M.Q. Wang: Luminescence behavior of Er3+ ions in glass-ceramics containing CaF2 nanocrystals, J. Non-Cryst. Solids 351, 357–363 (2005)

    Article  CAS  Google Scholar 

  252. S. Ye, B. Zhu, J.X. Chen, J. Luo, J.R. Qiu: Infrared quantum cutting in Tb3+,Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals, Appl. Phys. Lett. (2008), https://doi.org/10.1063/1.2907496

    Article  Google Scholar 

  253. F. Goutaland, P. Jander, W.S. Brocklesby, G.J. Dai: Crystallisation effects on rare earth dopants in oxyfluoride glass ceramics, Opt. Mater. 22, 383–390 (2003)

    Article  CAS  Google Scholar 

  254. S. Ye, B. Zhu, J. Luo, J.X. Chen, G. Lakshminarayana, J.R. Qiu: Enhanced cooperative quantum cutting in Tm3+-Yb3+ codoped glass ceramics containing LaF3 nanocrystals, Opt. Express 16, 8989–8994 (2008)

    Article  CAS  Google Scholar 

  255. Y. Kawamoto, R. Kanno, J. Qiu: Upconversion luminescence of Er3+ in transparent SiO2-PbF2-ErF3 glass ceramics, J. Mater. Sci. 33, 63–67 (1998)

    Article  CAS  Google Scholar 

  256. A. Biswas, G.S. Maciel, C.S. Friend, P.N. Prasad: Upconversion properties of a transparent Er3+-Yb3+ co-doped LaF3-SiO2 glass-ceramics prepared by sol-gel method, J. Non-Cryst. Solids 316, 393–397 (2003)

    Article  CAS  Google Scholar 

  257. X.S. Qiao, X.P. Fan, J. Wang, M.Q. Wang: Judd-Ofelt analysis and luminescence behavior of Er3+ ions in glass ceramics containing SrF2 nanocrystals, J. Appl. Phys. (2006), https://doi.org/10.1063/1.2189021

    Article  Google Scholar 

  258. X.S. Qiao, X.P. Fan, M.Q. Wang: Luminescence behavior of Er3+ in glass ceramics containing BaF2 nanocrystals, Scr. Mater. 55, 211–214 (2006)

    Article  CAS  Google Scholar 

  259. M. Mortier, F. Auzel: Rare-earth doped transparent glass-ceramics with high cross-sections, J. Non-Cryst. Solids 256, 361–365 (1999)

    Article  Google Scholar 

  260. Z. Pan, A. Ueda, R. Mu, S.H. Morgan: Upconversion luminescence in Er3+-doped germanate-oxyfluoride and tellurium-germanate-oxyfluoride transparent glass-ceramics, J. Lumin. 126, 251–256 (2007)

    Article  CAS  Google Scholar 

  261. J. Lucas: Infrared glasses, Curr. Opin. Solid State Mater. Sci. 4, 181–187 (1999)

    Article  CAS  Google Scholar 

  262. X.H. Zhang, L. Calvez, V. Seznec, H.L. Ma, S. Danto, P. Houizot, C. Boussard-Pledel, J. Lucas: Infrared transmitting glasses and glass-ceramics, J. Non-Cryst. Solids 352, 2411–2415 (2006)

    Article  CAS  Google Scholar 

  263. C.G. Lin, L. Calvez, B. Bureau, H.Z. Tao, M. Allix, Z.X. Hao, V. Seznec, X.H. Zhang, X.J. Zhao: Second-order optical nonlinearity and ionic conductivity of nanocrystalline GeS2-Ga2S3-LiI glass-ceramics with improved thermo-mechanical properties, Phys. Chem. Chem. Phys. 12, 3780–3787 (2010)

    Article  CAS  Google Scholar 

  264. M. Roze, L. Calvez, Y. Ledemi, M. Allix, G. Matzen, X.H. Zhang: Optical and mechanical properties of glasses and glass-ceramics based on the Ge-Ga-Se system, J. Am. Ceram. Soc. 91, 3566–3570 (2008)

    Article  CAS  Google Scholar 

  265. J.J. Mecholsky, G.R. Srinivas, P.B. Macedo, C.T. Moynihan: Chalcogenide glass-ceramics, Am. Ceram. Soc. Bull. 52, 702–703 (1973)

    Google Scholar 

  266. J.J. Mecholsky: Microstructural Investigations of a Chalcogenide Glass Ceramic, PhD Thesis (Catholic Univ. of America, Washington 1973)

    Google Scholar 

  267. J. Cheng: Properties and structure of the infrared-transmitting arsenic-germanium-selenium-tin glass ceramic system, Huadong Huagong Xueyuan Xuebao 3, 337–351 (1982)

    Google Scholar 

  268. X.H. Zhang, M.A. Hongli, J. Lucas: A new class of infrared transmitting glass-ceramics based on controlled nucleation and growth of alkali halide in a sulphide based glass matrix, J. Non-Cryst. Solids 337, 130–135 (2004)

    Article  CAS  Google Scholar 

  269. X.H. Zhang, B. Bureau, P. Lucas, C. Boussard-Pledel, J. Lucas: Glasses for seeing beyond visible, Chem. Eur. J. 14, 432–442 (2008)

    Article  CAS  Google Scholar 

  270. L. Calvez, M. Roze, Y. Ledemi, H.L. Ma, J. Lucas, M. Allix, G. Matzen, X.H. Zhang: Controlled crystallization in Ge-(Sb/Ga)-(S/Se)-MX glasses for infrared applications, J. Ceram. Soc. Jpn. 116, 1079–1082 (2008)

    Article  CAS  Google Scholar 

  271. R. Balda, S. Garcia-Revilla, J. Fernandez, V. Seznec, V. Nazabal, X.H. Zhang, J.L. Adam, M. Allix, G. Matzen: Upconversion luminescence of transparent Er(3+)-doped chalcohalide glass-ceramics, Opt. Mater. 31, 760–764 (2009)

    Article  CAS  Google Scholar 

  272. M. Guignard, V. Nazabal, H.L. Ma, X.H. Zhang, H. Zeghlache, G. Martinelli, Y. Quiquempois, F. Smektala: Chalcogenide glass-ceramics for second harmonic generation, Phys. Chem. Glass. – Eur. J. Glass Sci. Technol. B 48, 19–22 (2007)

    CAS  Google Scholar 

  273. M. Guignard, V. Nazabal, X.H. Zhang, F. Smektala, A. Moreac, S. Pechev, H. Zeghlache, A. Kudlinski, G. Martinelli, Y. Quiquempois: Crystalline phase responsible for the permanent second-harmonic generation in chalcogenide glass-ceramics, Opt. Mater. 30, 338–345 (2007)

    Article  CAS  Google Scholar 

  274. S.R. Ovshinsky: Reversible electrical switching phenomena in disordered structures, Phys. Rev. Lett. 21, 1450 (1968)

    Article  Google Scholar 

  275. J. Kalb, F. Spaepen, M. Wuttig: Atomic force microscopy measurements of crystal nucleation and growth rates in thin films of amorphous Te alloys, Appl. Phys. Lett. 84, 5240–5242 (2004)

    Article  CAS  Google Scholar 

  276. A. Hayashi, K. Minami, F. Mizuno, M. Tatsumisago: Formation of Li+ superionic crystals from the Li2S-P2S5 melt-quenched glasses, J. Mater. Sci. 43, 1885–1889 (2008)

    Article  CAS  Google Scholar 

  277. L.L. Hench: Bioceramics, J. Am. Ceram. Soc. 81, 1705–1728 (1998)

    Article  CAS  Google Scholar 

  278. L.L. Hench: Bioceramics – From concept to clinic, J. Am. Ceram. Soc. 74, 1487–1510 (1991)

    Article  CAS  Google Scholar 

  279. M. Guazzato, M. Albakry, S.P. Ringer, M.V. Swain: Strength, fracture toughness and microstructure of a selection of all-ceramic materials. Part II. Zirconia-based dental ceramics, Dent. Mater. 20, 449–456 (2004)

    Article  CAS  Google Scholar 

  280. I. Denry, J.A. Holloway: Ceramics for dental applications: A review, Materials 3, 351–368 (2010)

    Article  CAS  Google Scholar 

  281. W. Höland, G.H. Beall: Applications of Glass-Ceramics. In: Glass-Ceramic Technology, 2nd edn., (Wiley, Hoboken 2012)

    Chapter  Google Scholar 

  282. T. Kokubo: A/W Glass-Ceramic: Processing and Properties. In: An Introduction to Bioceramics, ed. by L.L. Hench (World Scientific, Singapore 1993) pp. 75–88

    Chapter  Google Scholar 

  283. T. Yamamuro, J. Shikata, H. Okumura, T. Kitsugi, Y. Kakutani, T. Matsui, T. Kokubo: Replacement of the lumbar vertebrae of sheep with ceramic prostheses, J. Bone Jt. Surg. Br. 72, 889–893 (1990)

    Article  CAS  Google Scholar 

  284. I.W. Donald: Immobilisation of radioactive and non-radioactive wastes in glass-based systems: an overview, Glass Technol. – Eur. J. Glass Sci. Technol. Part A 48, 155–163 (2007)

    CAS  Google Scholar 

  285. I. Ojovan, W.E. Lee: An Introduction to Nuclear Waste Immobilisation (Elsevier, Oxford 2005)

    Google Scholar 

  286. P. Rigny, B. Bonin, J.M. Gras: The radioactive wastes management, Actual. Chim. 346, 1–10 (2010)

    Google Scholar 

  287. W.E. Lee, M.I. Ojovan, M.C. Stennett, N.C. Hyatt: Immobilisation of radioactive waste in glasses, glass composite materials and ceramics, Adv. Appl. Ceram. 105, 3–12 (2006)

    Article  CAS  Google Scholar 

  288. I.W. Donald, B.L. Metcalfe, R.N.J. Taylor: The immobilization of high level radioactive wastes using ceramics and glasses, J. Mater. Sci. 32, 5851–5887 (1997)

    Article  CAS  Google Scholar 

  289. D. Caurant, P. Loiseau, O. Majérus, V. Aubin-Chevaldonnet, I. Bardez, A. Quintas: Glasses, Glass-Ceramics and Ceramics for Immobilization of Highly Radioactive Nuclear Wastes (Nova Science, Hauppauge 2009)

    Google Scholar 

  290. R.D. Rawlings, J.P. Wu, A.R. Boccaccini: Glass-ceramics: Their production from wastes – A review, J. Mater. Sci. 41, 733–761 (2006)

    Article  CAS  Google Scholar 

  291. P. Colombo, G. Brusatin, E. Bernardo, G. Scarinci: Inertization and reuse of waste materials by vitrification and fabrication of glass-based products, Curr. Opin. Solid State Mater. Sci. 7, 225–239 (2003)

    Article  CAS  Google Scholar 

  292. M. Romero, R.D. Rawlings, J.M. Rincon: Development of a new glass-ceramic by means of controlled vitrification and crystallisation of inorganic wastes from urban incineration, J. Eur. Ceram. Soc. 19, 2049–2058 (1999)

    Article  CAS  Google Scholar 

  293. Cofalit: qu'est ce que c'est? et le projet SESCO, http://europlasma.desforums.net/t37-cofalit-qu-est-ce-que-c-est-et-le-projet-sesco

  294. J. Macdowell, G.H. Beall: Low K glass-ceramics for microelectronic packaging, Ceram. Trans. 15, 259–277 (1990)

    CAS  Google Scholar 

  295. I.W. Donald: Preparation, properties and chemistry of glass-ceramic-to-metal and glass-ceramic-to-metal seals and coatings, J. Mater. Sci. 28, 2841–2886 (1993)

    Article  CAS  Google Scholar 

  296. P.A. Lessing: A review of sealing technologies applicable to solid oxide electrolysis cells, J. Mater. Sci. 42, 3465–3476 (2007)

    Article  CAS  Google Scholar 

  297. K.L. Ley, M. Krumpelt, R. Kumar, J.H. Meiser, J. Bloom: Glass-ceramic sealants for solid oxide fuel cells. Part 1. Physical properties, J. Mater. Res. 11, 1489–1493 (1996)

    Article  CAS  Google Scholar 

  298. R.N. Singh: Sealing technology for solid oxide fuel cells (SOFC), Int. J. Appl. Ceram. Technol. 4, 134–144 (2007)

    Article  CAS  Google Scholar 

  299. K. Hirose, T. Honma, Y. Benino, T. Komatsu: Glass-ceramics with LiFePO4 crystals and crystal line patterning in glass by YAG laser irradiation, Solid State Ion 178, 801–807 (2007)

    Article  CAS  Google Scholar 

  300. A. Sakamoto, S. Yamamoto: Glass–Ceramics: Engineering principles and applications, Int. J. Appl. Glass Sci. 1, 237–247 (2010)

    Article  CAS  Google Scholar 

  301. X. Py, N. Calvet, R. Olives, P. Echegut, C. Bessada, F. Jay: Low-cost material for sensible heat based thermal storage to be used in thermodynamic solar power plants. In: Proc. ASME 3rd Int. Conf. Energy Sust, Vol. 2 (2009) pp. 527–532

    Google Scholar 

  302. X. Py, N. Calvet, R. Olives, A. Meffre, P. Echegut, C. Bessada, E. Véron, S. Ory: Recycled material for sensible heat based thermal energy storage to be used in concentrated solar thermal power plants, J. Solar Energy Eng. (2011), https://doi.org/10.1115/1.4004267

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Allix .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Allix, M., Cormier, L. (2019). Crystallization and Glass-Ceramics. In: Musgraves, J.D., Hu, J., Calvez, L. (eds) Springer Handbook of Glass. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-93728-1_4

Download citation

Publish with us

Policies and ethics