Advertisement

Paddy Land Pollutants and Their Role in Climate Change

  • Rida Akram
  • Veysel Turan
  • Abdul Wahid
  • Muhammad Ijaz
  • Muhammad Adnan Shahid
  • Shoaib Kaleem
  • Abdul Hafeez
  • Muhammad Muddassar Maqbool
  • Hassan Javed Chaudhary
  • Muhammad Farooq Hussain Munis
  • Muhammad Mubeen
  • Naeem Sadiq
  • Rabbia Murtaza
  • Dildar Hussain Kazmi
  • Shaukat Ali
  • Naeem Khan
  • Syeda Refat Sultana
  • Shah Fahad
  • Asad Amin
  • Wajid Nasim
Chapter
Part of the Soil Biology book series (SOILBIOL, volume 53)

Abstract

Climate change is one of the biggest concerns because its potential impact on human life is severe. The contribution ratio of CH4, CO2, and N2O to global warming would be high even if their emission rates are small. Paddy lands may become polluted by the aggregation of several pollutants, i.e., organic and inorganic fertilizers; discharges from the quickly extending industrial territories; use of manure, and organic solid waste; and wastewater irrigation system. Paddy lands are considered to be a major source of anthropogenic greenhouse gas (GHG) emissions through methanogenesis (a process of methane production), a microbial process that is strictly restricted to paddy fields. Overall 90% of rice land is at least temporarily flooded and produces GHGs at higher rates. The production of N2O in soils occurs during nitrification, denitrification, and microbiological processes. A positive relationship was found between the climate change and N fertilizer application with N2O emissions from paddy lands. The use of N fertilizer also stimulates and influences the CH4 emission flux between paddy land and atmosphere. The impact of biochar amendments on the CH4 emission expanded by 35.16–40.62% in paddy fields. It is of incredible concern worldwide that gaseous outflows from management of organic solid waste add to local and worldwide scale ecological procedures, for example, eutrophication, fermentation, and climate change. CH4 is generated from the disintegration of organic matter (OM) in anaerobic conditions by methanogens. Soil OM is the most well-known constraining element for methanogenesis in paddy fields. OM obtained from three primary sources: animal fertilizer, green manure, and crop deposits. The amendment of OM, for example, rice deposits and compost application, prompts expanding CH4 outflows because of anaerobic decay and results in climate change.

References

  1. Akram R, Hashmi MZ, Nasim W (2017) Role of antibiotics in climate change. In: Hashmi MZ, Strezov V, Varma A (eds) Antibiotics and antibiotics resistance genes in soils. Springer, Cham, pp 91–98Google Scholar
  2. Allen DE, Kingston G, Rennenberg H, Dalal RC, Schmidt S (2010) Effect of nitrogen fertilizer management and waterlogging on nitrous oxide emission from subtropical sugarcane soils. Agric Ecosyst Environ 136:209–217CrossRefGoogle Scholar
  3. Aronson EL, Helliker BR (2010) Methane flux in non-wetland soils in response to nitrogen addition: a meta-analysis. Ecology 91:3242–3251CrossRefGoogle Scholar
  4. Augustenborg CA, Hepp S, Kammann C, Hagan D, Schmidt O, Müller C (2012) Biochar and earthworm effects on soil nitrous oxide and carbon dioxide emissions. J Environ Qual 41:1203–1209CrossRefGoogle Scholar
  5. Banger K, Tian HQ, Lu CQ (2012) Do nitrogen fertilizers stimulate or inhibit methane emissions from rice fields? Glob Chang Biol 18:3259–3267CrossRefGoogle Scholar
  6. Bouwman AF, Boumans LJM (2002) Emissions of N2O and NO from fertilized fields: summary of available measurement data. Glob Biogeochem Cycles 16:1–11CrossRefGoogle Scholar
  7. Butterbach-Bahl K, Papen H, Rennenberg H (1997) Impact of gas transport through rice cultivars on methane emission from rice paddy fields. Plant Cell Environ 20:1175–1183CrossRefGoogle Scholar
  8. Chadwick D, Sommer S, Thorman R, Fangueiro D, Cardenas L, Amon B et al (2011) Manure management: implications for greenhouse gas emissions. Anim Feed Sci Technol 16:514–531CrossRefGoogle Scholar
  9. Chen C, Yu CN, Shen CF, Tang XJ, Qin ZH, Yang K, Hashmi MZ, Huang RL (2014) Paddy field—a natural sequential anaerobic aerobic bioreactor for polychlorinated biphenyls transformation. Environ Pollut 190:43–50CrossRefGoogle Scholar
  10. Clemens J, Wulf S (2005) Reduktion der ammoniakausgasung aus kofermentationssubstraten und gulle wahrend der lagerung und ausbringung durch interne versaurung mit in NRW anfallenden organischen kohlenstofffraktionen. Forschungsvorhaben im Auftrag des Ministeriums für Umwelt und Naturschutz, Landwirtschaft und Verbraucherschutz des Landes Nordrhein-Westfalen, Bonn, p 41Google Scholar
  11. Conrad R (2007) Microbial ecology of methanogens and methanotrophs. In: Donald LS (ed) Advances in agronomy. Elsevier, Amsterdam, pp 1–63Google Scholar
  12. Datta A, Yeluripati JB, Nayak DR, Mahata KR, Santra SC, Adhya TK (2013) Seasonal variation of methane flux from coastal saline rice field with the application of different organic manures. Atmos Environ 66:114–122CrossRefGoogle Scholar
  13. Davidson EA (2009) The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860. Nat Geosci 2:659–662CrossRefGoogle Scholar
  14. Dong H, Yao Z, Zheng X, Mei B, Xie B, Wang R, Zhu J (2011) Effect of ammonium-based, non-sulfate fertilizers on CH4 emissions from a paddy field with a typical Chinese water management regime. Atmos Environ 45:1095–1101CrossRefGoogle Scholar
  15. Duan F, Liu X, Yu T, Cachier H (2004) Identification and estimate of biomass burning contribution to the urban aerosal organic carbon concentrations in Beijing. Atmos Environ 38:1275–1282CrossRefGoogle Scholar
  16. Eurostat (2016) Agriculture, forestry and fishery statistics—2015 edition. Publications Office of the European Union, LuxembourgGoogle Scholar
  17. Feng Y, Xu Y, Yu Y, Xie Z, Lin X (2012) Mechanisms of biochar decreasing methane emission from Chinese paddy soils. Soil Biol Biochem 46:80–88CrossRefGoogle Scholar
  18. Food and Agricultural Organization of the United Nations (2010) OECD-FAO agricultural outlook 2011–2030Google Scholar
  19. Frenzel P, Karofeld E (2000) CH4 emission from a hollow-ridge complex in a raised bog: the role of CH4 production and oxidation. Biogeochemistry 51:91–112CrossRefGoogle Scholar
  20. Gagnon B, Ziadi N, Rochette P, Chantigny MH, Angers DH (2011) Fertilizer source influenced nitrous oxide emissions from a clay soil under corn. Soil Sci Soc Am J 75:595–604CrossRefGoogle Scholar
  21. Hale SE, Lehmann J, Rutherford D et al (2012) Quantifying the total and bioavailablepolycyclic aromatic hydrocarbons and dioxins in biochars. Environ Sci Technol 46:2830–2838CrossRefGoogle Scholar
  22. Han I, Congeevaram S, Ki DW, Oh BT, Park J (2011) Bacterial community analysis of swine manure treated with autothermal thermophilic aerobic digestion. Appl Microbiol Biotechnol 89:835–842CrossRefGoogle Scholar
  23. Haque MM, Kim SY, Ali MA, Kim PJ (2015) Contribution of greenhouse gas emissions during cropping and fallow seasons on total global warming potential in mono-rice paddy soils. Plant Soil 387:251–264CrossRefGoogle Scholar
  24. Intergovernmental Panel on Climate Change (IPCC) (2006) Guidelines for National Greenhouse Gas Inventories. In: Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K (eds) Prepared by the National Greenhouse Gas Inventories Programme. IGES, JapanGoogle Scholar
  25. Intergovernmental Panel on Climate Change (IPCC) (2013) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  26. Jing Z, Hu Y, Niu Q, Liu Y, Li YY, Wang XC (2013) UASB performance and electron competition between methane-producing archaea and sulfate-reducing bacteria in treating sulfate-rich wastewater containing ethanol and acetate. Bioresour Technol 137:349–357CrossRefGoogle Scholar
  27. Jones DL, Murphy DV, Khalid M, Ahmad W, Edwards-Jones G, Deluca TH (2011) Short-term biochar-induced increase in soil CO2 release is both biotically and abiotically mediated. Soil Biol Biochem 43:1723–1731CrossRefGoogle Scholar
  28. Khan S, Cao Q, Zheng YM, Huang YZ, Zhu YG (2008) Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environ Pollut 152:686–692CrossRefGoogle Scholar
  29. Knoblauch C, Marifaat AA, Haefele M (2008) Biochar in rice-based system: impact on carbon mineralization and trace gas emissions. Bioresour Technol 95:255–257Google Scholar
  30. Knoblauch C, Maarifat AA, Pfeiffer EM, Haefele SM (2011) Degradability of black carbon and its impact on trace gas fluxes and carbon turnover in paddy soils. Soil Biol Biochem 43:1768–1778CrossRefGoogle Scholar
  31. Kogel-Knabner I, Amelung W, Cao ZH, Fiedler S, Frenzel P, Jahn R (2010) Biogeochemistry of paddy soils. Geoderma 157:1–14CrossRefGoogle Scholar
  32. Le Mer J, Roger P (2001) Production, oxidation, emission and consumption of methane by soils: a review. Eur J Soil Biol 37:25–50CrossRefGoogle Scholar
  33. Lehmann J et al (2011) Biochar effects on soil biota - a review. Soil Biol Biochem 43:1812–1836CrossRefGoogle Scholar
  34. Linquist BA, Adviento-Borbe MA, Pittelkow CM, van Kessel C, van Groenigen KJ (2012) Fertilizer management practices and greenhouse gas emissions from rice systems: a quantitative review and analysis. Field Crops Res 135:10–21CrossRefGoogle Scholar
  35. Liu LL, Greaver TL (2009) A review of nitrogen enrichment effects on three biogenic GHGs: the CO2 sink may be largely offset by stimulated N2O and CH4 emission. Ecol Lett 12:1103–1117CrossRefGoogle Scholar
  36. Liu C, Wang K, Zheng X (2012) Responses of N2O and CH4 fluxes to fertilizer nitrogen addition rates in an irrigated wheat–maize cropping system in northern China. Biogeosciences 9:839–850CrossRefGoogle Scholar
  37. Liu S, Qin Y, Zou J, Liu Q (2014) Effects of water regime during rice-growing season on annual direct N2O emission in a paddy rice-winter wheat rotation system in Southeast China. Sci Total Environ 408:906–913CrossRefGoogle Scholar
  38. Lu F, Wang XK, Han B, Ouyang ZY, Zheng H (2010) Straw return to rice paddy: soil carbon sequestration and increased methane emission. Ying Yong Sheng Tai Xue Bao 21:99–108PubMedGoogle Scholar
  39. Ma K, Conrad R, Lu Y (2012) Responses of methanogen mcrA genes and their transcripts to an alternate dry/wet cycle of paddy field soil. Appl Environ Microbiol 78:445–454CrossRefGoogle Scholar
  40. Mohanty SR, Bodelier PLE, Floris V, Conrad R (2006) Differential effects of nitrogenous fertilizers on methane-consuming microbes in rice field and forest soils. Appl Environ Microbiol 72:1346–1354CrossRefGoogle Scholar
  41. Mosier AR, Halvorson AD, Reule CA, Liu XJ (2006) Net global warming potential and greenhouse gas intensity in irrigated cropping systems in northeastern Colorado. J Environ Qual 35:1584–1598CrossRefGoogle Scholar
  42. Myhre G, Shindell D, BreÂon FM, Collins W, Fuglestvedt J, Huang J et al (2013) Anthropogenic and natural radiative forcing. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Cambridge University Press, Cambridge, p 714Google Scholar
  43. Natywa M, Selwet M, Maciejewski T (2014) Wpływ wybranych czynników agrotechnicznych na liczebność i aktywność drobnoustrojów glebowych of some agrotechnical factors on the number and activity soil. Fragmenta Agronomica 31:56–63Google Scholar
  44. Nayak DR, Babu YJ, Datta A, Adhya TK (2007) Methane oxidation in an intensively cropped tropical rice field soil under long-term application of organic and mineral fertilizers. J Environ Qual 36:1577–1584CrossRefGoogle Scholar
  45. Nouchi I, Mariko S, Aoki K (1990) Mechanism of methane transport from the rhizosphere to the atmosphere through rice plant. Plant Physiol 94:59–66CrossRefGoogle Scholar
  46. Oenema O, Tamminga S (2005) Nitrogen in global animal production and management options for improving nitrogen use efficiency. Sci China C Life Sci 48:871–887PubMedGoogle Scholar
  47. Owen JJ, Silver WL (2015) Greenhouse gas emissions from dairy manure management: a review of field-based studies. Glob Chang Biol 21:550–565CrossRefGoogle Scholar
  48. Pardo G, Moral R, Aguilera E, del Prado A (2015) Gaseous emissions from management of solid waste: a systematic review. Glob Chang Biol 21:1313–1327CrossRefGoogle Scholar
  49. Peng J, Lu Z, Rui J, Lu Y (2008) Dynamics of the methanogenic archaeal community during plant residue decomposition in an anoxic rice field soil. Appl Environ Microbiol 74:2894–2901CrossRefGoogle Scholar
  50. Ravishankara AR, Daniel JS, Portmann RW (2009) Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326:123–125CrossRefGoogle Scholar
  51. Reynolds L (2013) Agriculture and livestock remain major sources of greenhouse gas emissions. Worldwatch Institute, Washington, p 18Google Scholar
  52. Ro S, Seanjan P, Tulaphitak T (2011) Sulfate content influencing methane production and emissionfrom incubated soil and rice-planted soil in Northeast Thailand. Soil Sci Plant Nutr 57:833–842CrossRefGoogle Scholar
  53. Shang QY, Yang XX, Gao CM, Wu PP, Liu JJ, Xu YC, Shen QR, Zou JW, Guo SW (2011) Net annual global warming potential and greenhouse gas intensity in Chinese double rice-cropping systems: a 3-year field measurement in long-term fertilizer experiment. Glob Chang Biol 17:2196–2210CrossRefGoogle Scholar
  54. Skiba U, Jones SK, Drewer J, Helfter C, Anderson M, Dinsmore K, McKenzie R, Nemitz E, Sutton MA (2013) Comparison of soil greenhouse gas fluxes from extensive and intensive grazing in a temperate maritime climate. Biogeosciences 10:1231–1241CrossRefGoogle Scholar
  55. Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P et al (2007) Policy and technological constraints to implementation of greenhouse gas mitigation options in agriculture. Agric Ecosyst Environ 118:6–28CrossRefGoogle Scholar
  56. Spokas KA (2013) Impact of biochar field aging on laboratory greenhouse gas production potentials. GCB Bioenergy 5:165–176CrossRefGoogle Scholar
  57. SSIBCCC (Second State Information Bulletin of Climate Change in China) (2013) Second National Communication on climate change of the People’s republic of China, vol 2, p 18Google Scholar
  58. Sutton-Grier AE, Megonigal JP (2011) Plant species traits regulate methane production in freshwater wetland soils. Soil Biol Biochem 43:413–420CrossRefGoogle Scholar
  59. Tong C, Wang WQ, Zeng CS, Marrs R (2010) Methane (CH4) emission from a tidal marsh in the Min River estuary, Southeast China. J Environ Sci Heal A 45:50–516CrossRefGoogle Scholar
  60. Troy SM, Lawlor PG, Flynn CJO, Healy MG (2013) Impact of biochar addition to soil on greenhouse gas emissions following pig manure application. Soil Biol Biochem 60:173–181CrossRefGoogle Scholar
  61. Venterea RT, Maharjan B, Dolan MS (2011) Fertilizer source and tillage effects on yield-scaled nitrous oxide emissions in a corn cropping system. J Environ Qual 40:1521–1531CrossRefGoogle Scholar
  62. Wang ZY, Xu YC, Li Z, Guo YX, Wassmann R, Neue HU, Lantin RS, Buendia LV, Ding YP, Wang ZZ (2000) A four-year record of methane emissions from irrigated Rice fields in the Beijing region of China. Nutr Cycl Agroecosyst 58:55–63CrossRefGoogle Scholar
  63. Wang YS et al (2010) Simulated nitrogen deposition reduces CH4 uptake and increases N2O emission from a subtropical plantation forest soil in southern China. PLoS One 9:e93571CrossRefGoogle Scholar
  64. Wassmann R, Lantin RS, Neue HU, Buendia LV, Corton TM, Lu Y (2000) Characterization of methane emissions from rice fields in Asia. III. Mitigation options and future research needs. Nutr Cycl Agroecosyst 58:23–36CrossRefGoogle Scholar
  65. WRI (2014) World greenhouse gas emissions in 2005. World Resources InstituteGoogle Scholar
  66. Yan G, Zheng X, Cui F, Yao Z, Zhou Z, Deng J, Xu Y (2013) Two-year simultaneous records of N2O and NO fluxes from a farmed cropland in the northern China plain with a reduced nitrogen addition rate by one-third. Agric Ecosyst Environ 178:39–50CrossRefGoogle Scholar
  67. Yang LG, Wang YD (2007) The impact of free-air CO2 enrichment (FACE) and nitrogen supply on grain quality of rice. Field Crops Res 102:128–140CrossRefGoogle Scholar
  68. Yu L, Tang J, Zhang R, Wu Q, Gong M (2012) Effects of biochar application on soil methane emission at different soil moisture levels. Biol Fertil Soils 49:119–128CrossRefGoogle Scholar
  69. Yuan Q, Pump J, Conrad R (2013) Straw application in paddy soil enhances methane production also from other carbon sources. Biogeosci Discuss 10:14169–14193CrossRefGoogle Scholar
  70. Yusuf RO, Noor ZZ, Abba AH, Hassan MAA, Din MFM (2012) Methane emission by sectors: a comprehensive review of emission sources and mitigation methods. Renew Sustain Energy Rev 16:5059–5070CrossRefGoogle Scholar
  71. Zhang MK, Liu ZY, Wang H (2010) Use of single extraction methods to predict bioavailability of heavy metals in polluted soils to rice. Commun Soil Sci Plant Anal 41:820–831CrossRefGoogle Scholar
  72. Zhang AF, Liu YM, Pan GX, Hussain Q, Li LQ, Zheng JW, Zhang XH (2012) Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China plain. Plant Soil 351:263–275CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Rida Akram
    • 1
  • Veysel Turan
    • 2
  • Abdul Wahid
    • 3
  • Muhammad Ijaz
    • 4
  • Muhammad Adnan Shahid
    • 5
  • Shoaib Kaleem
    • 6
  • Abdul Hafeez
    • 7
  • Muhammad Muddassar Maqbool
    • 8
  • Hassan Javed Chaudhary
    • 9
  • Muhammad Farooq Hussain Munis
    • 9
  • Muhammad Mubeen
    • 1
  • Naeem Sadiq
    • 10
  • Rabbia Murtaza
    • 11
  • Dildar Hussain Kazmi
    • 12
  • Shaukat Ali
    • 13
  • Naeem Khan
    • 9
  • Syeda Refat Sultana
    • 1
  • Shah Fahad
    • 14
  • Asad Amin
    • 1
  • Wajid Nasim
    • 1
  1. 1.Department of Environmental SciencesCOMSATS UniversityVehariPakistan
  2. 2.Faculty of Agriculture, Department of Soil Science and Plant NutritionBingöl UniversityBingölTurkey
  3. 3.Department of Environmental SciencesBhauddin Zakerya UniversityMultanPakistan
  4. 4.College of Agriculture, Bhauddin Zakerya UniversityPunjabPakistan
  5. 5.University of FloridaGainesvilleUSA
  6. 6.Adaptive Research Farm, Agriculture Department, Government of PunjabDera Ghazi KhanPakistan
  7. 7.Cotton Physiology Lab for Efficient Production, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
  8. 8.Department of AgronomyGhazi UniversityDera Ghazi KhanPakistan
  9. 9.Department of Plant SciencesQuaid-i-Azam UniversityIslamabadPakistan
  10. 10.Atmospheric Research WingInstitute of Space and Planetary Astrophysics, University of KarachiKarachiPakistan
  11. 11.Center for Climate Change and Research DevelopmentCOMSATS UniversityIslamabadPakistan
  12. 12.National Agromet Centre, Pakistan Meteorological DepartmentIslamabadPakistan
  13. 13.Global Change Impact Studies Centre (GCISC), Ministry of Climate ChangeIslamabadPakistan
  14. 14.Department of AgricultureUniversity of SwabiKhyber Pakhtonkha (KPK)Pakistan

Personalised recommendations