Skip to main content

Hematologic Impact of Fluid Replacement

  • Chapter
  • First Online:
Hematologic Challenges in the Critically Ill

Abstract

Intravenous fluids can be characterized as both fluids and as medications. They have a role in fluid and electrolyte homeostasis, as well as a local drug effect on the tissue bed. This chapter is focused on the composition of intravenous fluids, intravascular volume resuscitation, and the impact of fluids on electrolytes and acid-base balance – including the adverse effects of hyperchloremia on clinical outcomes, as well as the role of fluids in coagulation. Furthermore, this chapter discusses the endothelial glycocalyx, its role in fluid homeostasis, as well as the harmful effects of volume overload. Optimal volume management is briefly discussed within the context of goal-directed fluid management and large blood component replacement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brunkhorst FM, Engel C, Bloos F, Meier-Hellmann A, Ragaller M, Weiler N, et al. Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med. 2008;358(2):125–39.

    Article  CAS  Google Scholar 

  2. Schortgen F, Girou E, Deye N, Brochard L. The risk associated with hyperoncotic colloids in patients with shock. Intensive Care Med. 2008;34(12):2157–68.

    Article  Google Scholar 

  3. Schortgen F, Lacherade JC, Bruneel F, Cattaneo I, Hemery F, Lemaire F, et al. Effects of hydroxyethyl starch and gelatin on renal function in severe sepsis: a multicentre randomised study. Lancet. 2001;357(9260):911–6.

    Article  CAS  Google Scholar 

  4. Mahmood A, Gosling P, Vohra RK. Randomized clinical trial comparing the effects on renal function of hydroxyethyl starch or gelatine during aortic aneurysm surgery. Br J Surg. 2007;94(4):427–33.

    Article  CAS  Google Scholar 

  5. Sakr Y, Payen D, Reinhart K, Sipmann FS, Zavala E, Bewley J, et al. Effects of hydroxyethyl starch administration on renal function in critically ill patients. Br J Anaesth. 2007;98(2):216–24.

    Article  CAS  Google Scholar 

  6. Finfer S, Bellomo R, Boyce N, French J, Myburgh J, Norton R. A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med. 2004;350(22):2247–56.

    Article  CAS  Google Scholar 

  7. Cochrane Injuries Group Albumin Reviewers. Human albumin administration in critically ill patients: systematic review of randomised controlled trials [see comments]. Br Med J. 1998;317(7153):235–40.

    Article  Google Scholar 

  8. Vincent JL, Russell JA, Jacob M, Martin G, Guidet B, Wernerman J, et al. Albumin administration in the acutely ill: what is new and where next? Crit Care. 2014;18(4):231.

    Article  Google Scholar 

  9. Sort P, Navasa M, Arroyo V, Aldeguer X, Planas R, Ruiz-del-Arbol L, et al. Effect of intravenous albumin on renal impairment and mortality in patients with cirrhosis and spontaneous bacterial peritonitis. N Engl J Med. 1999;341(6):403–9.

    Article  CAS  Google Scholar 

  10. Guevara M, Terra C, Nazar A, Sola E, Fernandez J, Pavesi M, et al. Albumin for bacterial infections other than spontaneous bacterial peritonitis in cirrhosis. A randomized, controlled study. J Hepatol. 2012;57(4):759–65.

    Article  CAS  Google Scholar 

  11. Kwok CS, Krupa L, Mahtani A, Kaye D, Rushbrook SM, Phillips MG, et al. Albumin reduces paracentesis-induced circulatory dysfunction and reduces death and renal impairment among patients with cirrhosis and infection: a systematic review and meta-analysis. Biomed Res Int. 2013;2013:295153.

    PubMed  PubMed Central  Google Scholar 

  12. Latta T. The first use of intravenous saline for the treatment of disease. Lancet. 1832;18(468):640.

    Article  Google Scholar 

  13. Stewart PA. Independent and dependent variables of acid-base control. Respir Physiol. 1978;33(1):9–26.

    Article  CAS  Google Scholar 

  14. Stewart PA. How to understand acid-base. Stewart PA, vol. 1981. New York: Elsevier; 1981. p. 1–286.

    Google Scholar 

  15. Stewart PA. Modern quantitative acid-base chemistry. Can J Physiol Pharmacol. 1983;61(12):1444–61.

    Article  CAS  Google Scholar 

  16. Kellum JA. Saline-induced hyperchloremic metabolic acidosis. Crit Care Med. 2002;30(1):259–61.

    Article  Google Scholar 

  17. Scheingraber S, Rehm M, Sehmisch C, Finsterer U. Rapid saline infusion produces hyperchloremic acidosis in patients undergoing gynecologic surgery. Anesthesiology. 1999;90(5):1265–70.

    Article  CAS  Google Scholar 

  18. Waters JH, Gottlieb A, Schoenwald P, Popovich MJ, Sprung J, Nelson DR. Normal saline versus lactated Ringer's solution for intraoperative fluid management in patients undergoing abdominal aortic aneurysm repair: an outcome study. Anesth Analg. 2001;93(4):817–22.

    Article  CAS  Google Scholar 

  19. Wilcox CS. Regulation of renal blood flow by plasma chloride. J Clin Invest. 1983;71(3):726–35.

    Article  CAS  Google Scholar 

  20. Hansen PB, Jensen BL, Skott O. Chloride regulates afferent arteriolar contraction in response to depolarization. Hypertension. 1998;32(6):1066–70.

    Article  CAS  Google Scholar 

  21. Suetrong B, Pisitsak C, Boyd JH, Russell JA, Walley KR. Hyperchloremia and moderate increase in serum chloride are associated with acute kidney injury in severe sepsis and septic shock patients. Crit Care. 2016;20(1):315.

    Article  Google Scholar 

  22. Wilkes NJ, Woolf R, Mutch M, Mallett SV, Peachey T, Stephens R, et al. The effects of balanced versus saline-based hetastarch and crystalloid solutions on acid-base and electrolyte status and gastric mucosal perfusion in elderly surgical patients. Anesth Analg. 2001;93(4):811–6.

    Article  CAS  Google Scholar 

  23. Williams EL, Hildebrand KL, McCormick SA, Bedel MJ. The effect of intravenous lactated Ringer's solution versus 0.9% sodium chloride solution on serum osmolality in human volunteers. Anesth Analg. 1999;88(5):999–1003.

    CAS  PubMed  Google Scholar 

  24. Shaw AD, Bagshaw SM, Goldstein SL, Scherer LA, Duan M, Schermer CR, et al. Major complications, mortality, and resource utilization after open abdominal surgery: 0.9% saline compared to plasma-Lyte. Ann Surg. 2012;255(5):821–9.

    Article  Google Scholar 

  25. Yunos NM, Bellomo R, Hegarty C, Story D, Ho L, Bailey M. Association between a chloride-liberal vs chloride-restrictive intravenous fluid administration strategy and kidney injury in critically ill adults. JAMA. 2012;308(15):1566–72.

    Article  CAS  Google Scholar 

  26. Yunos NM, Bellomo R, Taylor DM, Judkins S, Kerr F, Sutcliffe H, et al. Renal effects of an emergency department chloride-restrictive intravenous fluid strategy in patients admitted to hospital for more than 48 hours. Emerg Med Australas. 2017;29(6):643–9.

    Article  Google Scholar 

  27. Yunos NM, Bellomo R, Glassford N, Sutcliffe H, Lam Q, Bailey M. Chloride-liberal vs. chloride-restrictive intravenous fluid administration and acute kidney injury: an extended analysis. Intensive Care Med. 2015;41(2):257–64.

    Article  CAS  Google Scholar 

  28. McCluskey SA, Karkouti K, Wijeysundera D, Minkovich L, Tait G, Beattie WS. Hyperchloremia after noncardiac surgery is independently associated with increased morbidity and mortality: a propensity-matched cohort study. Anesth Analg. 2013;117(2):412–21.

    Article  Google Scholar 

  29. O'Malley CM, Frumento RJ, Hardy MA, Benvenisty AI, Brentjens TE, Mercer JS, et al. A randomized, double-blind comparison of lactated Ringer's solution and 0.9% NaCl during renal transplantation. Anesth Analg. 2005;100(5):1518–24, table of contents

    Article  CAS  Google Scholar 

  30. Hayakawa M. Pathophysiology of trauma-induced coagulopathy: disseminated intravascular coagulation with the fibrinolytic phenotype. J Intensive Care. 2017;5:14.

    Article  Google Scholar 

  31. Ruttmann TG, James MF, Aronson I. In vivo investigation into the effects of haemodilution with hydroxyethyl starch (200/0.5) and normal saline on coagulation [see comments]. Br J Anaesth. 1998;80(5):612–6.

    Article  CAS  Google Scholar 

  32. Ruttmann TG, James MF, Finlayson J. Effects on coagulation of intravenous crystalloid or colloid in patients undergoing peripheral vascular surgery. Br J Anaesth. 2002;89(2):226–30.

    Article  CAS  Google Scholar 

  33. Ruttmann TG, Jamest MF, Lombard EH. Haemodilution-induced enhancement of coagulation is attenuated in vitro by restoring antithrombin III to pre-dilution concentrations. Anaesth Intensive Care. 2001;29(5):489–93.

    CAS  PubMed  Google Scholar 

  34. Ruttmann TG, James MF, Viljoen JF. Haemodilution induces a hypercoagulable state [see comments]. Br J Anaesth. 1996;76(3):412–4.

    Article  CAS  Google Scholar 

  35. Janvrin SB, Davies G, Greenhalgh RM. Postoperative deep vein thrombosis caused by intravenous fluids during surgery. Br J Surg. 1980;67(10):690–3.

    Article  CAS  Google Scholar 

  36. Heather BP, Jennings SA, Greenhalgh RM. The saline dilution test--a preoperative predictor of DVT. Br J Surg. 1980;67(1):63–5.

    Article  CAS  Google Scholar 

  37. Jamnicki M, Zollinger A, Seifert B, Popovic D, Pasch T, Spahn DR. The effect of potato starch derived and corn starch derived hydroxyethyl starch on in vitro blood coagulation. Anaesthesia. 1998;53(7):638–44.

    Article  CAS  Google Scholar 

  38. Strauss RG, Stansfield C, Henriksen RA, Villhauer PJ. Pentastarch may cause fewer effects on coagulation than hetastarch. Transfusion. 1988;28(3):257–60.

    Article  CAS  Google Scholar 

  39. Stump DC, Strauss RG, Henriksen RA, Petersen RE, Saunders R. Effects of hydroxyethyl starch on blood coagulation, particularly factor VIII. Transfusion. 1985;25(4):349–54.

    Article  CAS  Google Scholar 

  40. Treib J, Haass A, Pindur G. Coagulation disorders caused by hydroxyethyl starch. Thromb Haemost. 1997;78(3):974–83.

    CAS  PubMed  Google Scholar 

  41. Treib J, Haass A, Pindur G, Grauer MT, Wenzel E, Schimrigk K. All medium starches are not the same: influence of the degree of hydroxyethyl substitution of hydroxyethyl starch on plasma volume, hemorrheologic conditions, and coagulation. Transfusion. 1996;36(5):450–5.

    Article  CAS  Google Scholar 

  42. Treib J, Haass A, Pindur G, Seyfert UT, Treib W, Grauer MT, et al. HES 200/0.5 is not HES 200/0.5. Influence of the C2/C6 hydroxymethylation ratio of hydroxyethyl starch (HES) on hemorheology, coagulation and elimination kinetics. Thromb Haemost. 1995;74(6):1452–6.

    Article  CAS  Google Scholar 

  43. Rheology: Merriam Webster Dictionary; 2018 [Definition of Rheology]. Available from: www.merriam-webster.com/dictionary/rheology.

  44. Bergqvist D. Dextran and haemostasis. A review. Acta Chir Scand. 1982;148(8):633–40.

    CAS  PubMed  Google Scholar 

  45. Bergqvist D. Dextran. In: Goldhaber SJ, editor. Prevention of venous thromboembolism. New York: Marcel Dekker, Inc; 1993. p. 167–95.

    Google Scholar 

  46. Steinbauer M, Harris AG, Leiderer R, Abels C, Messmer K. Impact of dextran on microvascular disturbances and tissue injury following ischemia/reperfusion in striated muscle. Shock. 1998;9(5):345–51.

    Article  CAS  Google Scholar 

  47. Myburgh JA, Finfer S, Billot L, Investigators C. Hydroxyethyl starch or saline in intensive care. N Engl J Med. 2013;368(8):775.

    Article  CAS  Google Scholar 

  48. Legendre C, Thervet E, Page B, Percheron A, Noel LH, Kreis H. Hydroxyethyl starch and osmotic-nephrosis-like lesions in kidney transplantation. Lancet. 1993;342(8865):248–9.

    Article  CAS  Google Scholar 

  49. Becker BF, Chappell D, Jacob M. Endothelial glycocalyx and coronary vascular permeability: the fringe benefit. Basic Res Cardiol. 2010;105(6):687–701.

    Article  CAS  Google Scholar 

  50. Rutledge JC, Ng KF, Aung HH, Wilson DW. Role of triglyceride-rich lipoproteins in diabetic nephropathy. Nat Rev Nephrol. 2010;6(6):361–70.

    Article  CAS  Google Scholar 

  51. Weinbaum S, Tarbell JM, Damiano ER. The structure and function of the endothelial glycocalyx layer. Annu Rev Biomed Eng. 2007;9:121–67.

    Article  CAS  Google Scholar 

  52. Woodcock TE, Woodcock TM. Revised Starling equation and the glycocalyx model of transvascular fluid exchange: an improved paradigm for prescribing intravenous fluid therapy. Br J Anaesth. 2012;108(3):384–94.

    Article  CAS  Google Scholar 

  53. Chappell D, Dorfler N, Jacob M, Rehm M, Welsch U, Conzen P, et al. Glycocalyx protection reduces leukocyte adhesion after ischemia/reperfusion. Shock. 2010;34(2):133–9.

    Article  CAS  Google Scholar 

  54. Chappell D, Jacob M. Role of the glycocalyx in fluid management: small things matter. Best Pract Res Clin Anaesthesiol. 2014;28(3):227–34.

    Article  Google Scholar 

  55. Chappell D, Jacob M, Hofmann-Kiefer K, Conzen P, Rehm M. A rational approach to perioperative fluid management. Anesthesiology. 2008;109(4):723–40.

    Article  Google Scholar 

  56. Jacob M, Chappell D, Hollmann MW. Current aspects of perioperative fluid handling in vascular surgery. Curr Opin Anaesthesiol. 2009;22(1):100–8.

    Article  Google Scholar 

  57. Bellamy MC. Wet, dry or something else? Br J Anaesth. 2006;97(6):755–7.

    Article  CAS  Google Scholar 

  58. Myles PS, Andrews S, Nicholson J, Lobo DN, Mythen M. Contemporary approaches to perioperative IV fluid therapy. World J Surg. 2017;41(10):2457–63.

    Article  Google Scholar 

  59. Thacker JK, Mountford WK, Ernst FR, Krukas MR, Mythen MM. Perioperative fluid utilization variability and association with outcomes: considerations for enhanced recovery efforts in sample US surgical populations. Ann Surg. 2016;263(3):502–10.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher R. Barnes MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barnes, C.R., Roche, A.M. (2018). Hematologic Impact of Fluid Replacement. In: Shander, A., Corwin, H. (eds) Hematologic Challenges in the Critically Ill. Springer, Cham. https://doi.org/10.1007/978-3-319-93572-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93572-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93571-3

  • Online ISBN: 978-3-319-93572-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics